SODIUM PERTECHNETATE (\(^{99m}\)Tc) INJECTION (NON-FISSION):

Revised Final text for addition to The International Pharmacopoeia

(January September 2009)

[Note from the Secretariat:
This monograph was adopted at the Forty-third WHO Expert Committee on Specifications for Pharmaceutical Preparations in October 2008 for addition to the 4th Edition of the International Pharmacopoeia
Further minor modifications have been applied to this text to be in line with the decisions taken when formatting the rest of the individual radiopharmaceuticals monographs]

NATRII PERTECHNETATIS (\(^{99m}\)Tc) SINE FISSIONE FORMATI
INJECTIO
SODIUM PERTECHNETATE (\(^{99m}\)Tc) INJECTION (NON-FISSION)

This monograph applies to sodium pertechnetate (\(^{99m}\)Tc) injection obtained from generators containing molybdenum-99 (\(^{99}\)Mo) produced by neutron irradiation of molybdenum and extracted from generator columns.

Description. Sodium pertechnetate (\(^{99m}\)Tc) injection (non-fission) is a clear, colourless solution.

Technetium-99m has a half-life of 6.02 hours.

Category. Diagnostic.

Labelling. Label must state that the injection has been prepared from molybdenum-99 produced from non-fission. Level of molybdenum-99 per vial may be required.

Additional information. Wherever \(V\) is used within the tests of this monograph, \(V\) is the maximum recommended dose, in millilitres.

Requirements

Complies with the monograph for “Parenteral Preparations” and with that for “Radiopharmaceuticals”.

Definition. Sodium pertechnetate (99mTc) injection (non-fission) is a sterile solution of technetium-99m in the form of pertechnetate ion, suitable for intravenous administration and that contains sufficient sodium chloride to make the solution isotonic with blood. The injection contains not less than 90% and not more than 110% of the content of technetium-99m stated on the label at the reference date and time stated on the label. Not less than 95% of the total technetium-99m radioactivity is present as pertechnetate ion. Not more than 0.1% of the total radioactivity is due to molybdenum-99. Not more than 0.01% of the total radioactivity is due to other radionuclides, apart from that due to technetium-99 resulting from the decay of technetium-99m.

Manufacture

Radionuclide production. Technetium-99m is a radioactive nuclide formed by the radioactive decay of molybdenum-99. Molybdenum-99 is a radioactive isotope of molybdenum and may be produced by neutron irradiation of natural molybdenum or of molybdenum enriched in molybdenum-98.

Production of radiopharmaceutical preparation. Molybdenum-99 is normally loaded into an ion-exchange column which allows separation of technetium-99m from parent molybdenum-99 using a suitable generator system. The columns of molybdenum-99 may be sterilized by "Heating in an autoclave" (see 5.8 Methods of sterilization) and a sterile solution may be used to elute under aseptic conditions. The injection may also be prepared under aseptic processing combined with sterilization by Filtration sterilized by Filtration (see 5.8 Methods of sterilization).

Identity tests

Either tests A and C or tests B and C may be applied.

A. Record the gamma-ray spectrum using a suitable instrument with a sample of technetium-99m, suitably diluted if needed. The spectrum is concordant with the reference spectrum of a specimen of technetium-99m in that it exhibits a major peak of 140keV.

Standardized technetium-99m and molybdenum-99 solutions are available from laboratories recognized by the relevant national or regional authority.

B. The half-life determined using a suitable detector system is between 5.72 and 6.32 hours.

C. Examine the radiochromatogram obtained in the test for radiochemical purity. The distribution of the radioactivity contributes to the identification of the preparation.
pH value. Carry out the test as described under 1.13 Determination of pH, modified as described in the monograph for “Radiopharmaceuticals”. pH of the injection, 4.5 to 7.5.

Sterility. The injection complies with 3.2 Test for sterility, modified as described in the monograph for “Radiopharmaceuticals”. Test for sterility will be initiated on the day of manufacture. The injection may be released for use before completion of the test.

Bacterial endotoxins. Carry out the test as described under 3.4 Test for bacterial endotoxins, modified as described in the monograph for “Radiopharmaceuticals”. The injection contains not more than 175/V I.U. of endotoxins per millilitre. The injection may be released for use before completion of the test.

Molybdenum-99. Record the gamma-ray spectrum using a suitable instrument and measure the half-life using a suitable method. Molybdenum-99 exhibits major peaks of 181, 740 and 778 keV and a half-life of 66.2 hours. Determine the relative amount of molybdenum-99. Take a volume of the injection equivalent to 37 MBq (1 mCi) and determine the gamma-ray spectrum using a sodium iodide detector with a shield of lead, of thickness of 6mm, interposed between the sample and the detector. The response in the region corresponding to the 740 keV photon of molybdenum-99 does not exceed that obtained using a 37 kBq (1 µCi) of a standardized solution of molybdenum-99 measured under the same conditions. Not more than 0.1% of the total radioactivity is due to molybdenum-99.

Radiochemical purity. Carry out the test as described under 1.14.2 Paper chromatography and ascending conditions, using paper for chromatography R. Apply to the paper about 5 µl of the injection, suitably diluted to give an optimum count rate and develop for 2 hours with a mixture of 80 volumes of methanol R and 20 volumes of water R. Allow the paper to dry in air and determine the radioactivity distribution by a suitable method. In this system, technetium-99m has an Rf value of about 0.6. Not less than 95% of the total radioactivity is in the spot corresponding to the pertechnetate ion.

Chemical purity

Aluminium. Dilute 1 ml of the injection to be examined to 2.5 ml with water R. Mix 2 ml of the resulting solution and 1 ml of acetate buffer, pH 4.6, TS in a test tube of about 12 mm in internal diameter. Add 0.05 ml of a 10 g/l solution of chromazurol S R. Allow to stand for 3 minutes. The colour of the solution is not more intense than that of an aluminium standard (2 ppm Al) TS prepared in the same manner; not more than 5 ppm of Al.

Radioactivity. Measure the radioactivity in a suitable counting equipment by comparison with a standardized technetium-99m solution or by measurement in an instrument calibrated with the aid of such a solution. Standardized technetium-99m solutions are available from laboratories recognized by the relevant national or regional authority (a good approximation may be obtained using an ionization chamber and employing a standardized solution of cobalt-57 provided that correction for the differences in the radiations emitted are made).

Standardized technetium-99m and cobalt-57 solutions are available from laboratories recognized by the relevant national or regional authority.
New reagent to be added to Ph.Int

Aluminium standard (2 ppm Al) TS.

Procedure. Immediately before use, dilute with water R to 100 times its volume a solution containing aluminium potassium sulphate R equivalent to 0.352 g of AlK(SO$_4$)$_2$, 12H$_2$O and 10 ml of diluted sulphuric acid R in 100 ml.

Chromazurol S R. C$_{23}$H$_{13}$Cl$_3$NaO$_9$S.

Description. A brownish-black powder.

A commercially available reagent of suitable grade.

Solubility. Soluble in water; slightly soluble in alcohol.