WHO GUIDELINE ON TRANSFER OF TECHNOLOGY

DRAFT DOCUMENT FOR COMMENT

The need for new WHO guidance for transfer of technology was discussed at the forty-second meeting of the WHO Expert Committee on Specifications for Pharmaceutical Preparations in October 2007. Colleagues from the WHO Prequalification Programme shared their experience of recently submitted dossiers by, and inspections carried out in, plants that had undergone technology transfer. Technology transfer is happening worldwide both within and between companies, and within the same country as well as between countries. The Expert Committee, therefore, recommended that WHO guidelines on transfer of technology be developed. This draft text was subsequently prepared by Mr John Startup, United Kingdom and by Dr Monika Zweygarth, South Africa. The document was then discussed during the consultation on WHO guidelines for medicines quality assurance, quality control laboratories and transfer of technology on 27-31 July 2009 and a revision prepared.

Please address comments on this proposal, by 10 October 2009, to Dr S. Kopp, Manager, Quality Assurance, Department of Essential Medicines and Pharmaceutical Policies, World Health Organization, 1211 Geneva 27, Switzerland, fax: (+41 22) 791 4730 or e-mail: kopps@who.int with a copy to bonnyw@who.int.

During the past few years we have moved more towards an electronic system for sending out our working documents for comment, for convenience and in order to speed up the process. If you do not already receive our documents electronically, please let us have your e-mail address (to bonnyw@who.int) and we will add it to our electronic mailing list.

© World Health Organization 2009

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any web site.

Please send any request for permission to:

Dr Sabine Kopp, Quality Assurance Programme, Quality & Safety: Medicines, Department of Essential Medicines and Pharmaceutical Policies, World Health Organization, CH-1211 Geneva 27, Switzerland. Fax: (41-22) 791 4730; e-mail: kopps@who.int.

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE PROPOSED ADOPTION PROCESS OF DOCUMENT QAS/08.259:

WHO GUIDELINE ON TRANSFER OF TECHNOLOGY

<table>
<thead>
<tr>
<th>Description</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation made by WHO Expert Committee on Specifications for Pharmaceutical Preparations to prepare the guideline</td>
<td>15-19 October 2007</td>
</tr>
<tr>
<td>Drafting of guideline by Mr John Startup, United Kingdom</td>
<td>January-April 2008</td>
</tr>
<tr>
<td>Preparation in WHO style by Dr Monika Zweygarth, South Africa</td>
<td>May-June 2008</td>
</tr>
<tr>
<td>Mailing of working document for comments</td>
<td>August 2008</td>
</tr>
<tr>
<td>Consolidation of comments and preparation of revised draft version</td>
<td>August-October 2008</td>
</tr>
<tr>
<td>Presentation to the forty-third WHO Expert Committee on Specifications for Pharmaceutical Preparations</td>
<td>13-17 October 2008</td>
</tr>
<tr>
<td>Collation of comments received</td>
<td>November 2008-May 2009</td>
</tr>
<tr>
<td>Discussion during consultation on WHO guidelines for medicines quality assurance, quality control laboratories and transfer of technology</td>
<td>27-31 July 2009</td>
</tr>
<tr>
<td>Revision prepared as a follow-up and mailing of revised document for comments</td>
<td>September 2009</td>
</tr>
<tr>
<td>Presentation to the WHO Expert Committee on Specifications for Pharmaceutical Preparations</td>
<td>12-16 October 2009</td>
</tr>
<tr>
<td>Follow-up action as required</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

1. INTRODUCTION ..4
2. SCOPE ...5
3. GLOSSARY ..6
4. PRODUCTION: TRANSFER (PROCESSING, PACKAGING AND CLEANING)..9
5. QUALITY CONTROL: ANALYTICAL METHOD TRANSFER14
6. ORGANIZATION AND MANAGEMENT ...17
7. PERSONNEL ..19
8. PREMISES AND EQUIPMENT ...19
9. DOCUMENTATION ..21
10. QUALIFICATION AND VALIDATION ..22
11. BIBLIOGRAPHY ...23
1. INTRODUCTION

1.1 Transfer of processes to an alternative site occur at some stage in the life-cycle of most products, from preclinical development through clinical studies, scale-up, manufacturing, production and launch, to the post-approval phase.

1.2 Transfer of technology is defined as “a logical procedure that controls the transfer of any process together with its documentation and professional expertise between development and manufacture or between manufacture intra- and inter-sites”.

1.3 Literature searches revealed little information on the subject from national or regional regulatory bodies. Guidance on intra-company transfers was prepared by the International Society for Pharmaceutical Engineering (ISPE) (1).

1.4 The ever-changing business strategies of pharmaceutical companies increasingly involve intra- and inter-company transfers of technology for reasons such as the need for additional capacity, relocation of operations or consolidations and mergers. The WHO Expert Committee on Specifications for Pharmaceutical Preparations, therefore, recommended in its forty-second report that WHO address this issue through preparation of WHO guidelines in this area (2).

1.5 Transfer of technology requires a planned approach using trained and knowledgeable personnel working within a quality system, with documentation of data covering all aspects of development, production and quality control.

1.6 In order for the transfer to be successful, the following requirements should be met:
 • the capabilities of the sending unit (SU) and at the receiving unit (RU) should be equivalent and facilities and equipment should operate according to the same principles;
 • a comprehensive technical gap analysis between the SU and RU including technical risk assessment and potential regulatory gaps;
 • adequate trained staff should be available or should be trained at the RU;
 • full documentation, such as protocols and reports, specifications, critical process parameters and supportive data should be transferred from the SU to the RU;
 • the SU should share standard operating procedures (SOPs) as needed and verify that the RU SOPs are appropriate.

1.7 A time frame should be defined for the transfer project. Modification to the original schedule should be documented.

1.8 Regulatory requirements in the countries of the SU and the RU should be taken into account and interpreted consistently throughout any transfer programme project.

1.9 Technology transfer can be considered successful if there is documented evidence that the RU can routinely reproduce the transferred product, process or method against a predefined set of specifications as agreed with the SU.
1.10 In the event that the RU identifies particular problems with the process during the transfer, the RU should communicate those back to the SU. This communication should be documented.

1.11 Technology transfer projects, particularly those between different companies, have legal and economic implications. If such issues, which may include intellectual property rights, royalties, pricing, conflict of interest and confidentiality, are expected to impact on technical matters in any way, they should be considered before and during planning and execution of the transfer.

2. SCOPE

Note: This section specifically provides for transfer of quality control (QC) methods where a technical agreement exists (SU manufacturer to RU manufacturer or SU manufacturer to RU QC laboratory). Where no such technical agreements exist (e.g. testing by national laboratories or testing for procurement agencies) a number of the bullets may not be workable, and alternative ways may be required.

2.1 This document gives guidance in principle and provides general recommendations on the necessary activities that should be addressed to conduct a successful intra- or inter-site transfer of technology as described in the Introduction to this guideline. The intention is to address the basic considerations needed for a successful transfer in order to satisfy the regulatory authority defined for the transfer process.

2.2 The recommendations provided in this guideline apply to all dosage forms. Particularly close control of certain aspects will be required for complex formulations such as sterile products, metered-dose aerosols and clinical trials supplies. WHO guidance on manufacture of specific pharmaceutical products \(4d,4e\) will be useful in this regard.

2.3 The guidelines will be applied to manufacturing investigational pharmaceutical products for clinical trials as part of research and development, manufacturing active pharmaceutical ingredients (APIs), manufacturing and packaging of bulk materials, manufacturing and packaging of finished pharmaceutical products (FPPs) and/or performing analytical testing.

2.4 The guideline addresses the following areas at the SU and the RU:

- transfer of development and production (processing, packaging and cleaning);
- transfer of analytical methods for quality assurance and quality control;
- skills assessment and training;
- organization and management of the transfer;
- assessment of premises and equipment;
- documentation; and
- qualification and validation.

2.5 Because each transfer project is unique, the provision of a comprehensive set of guidelines is beyond the scope of this document.
2.6 This guideline does not provide guidance on any legal, financial or commercial considerations associated with technology transfer projects.

3. GLOSSARY

Acceptance criteria
Measurable terms under which a test result will be considered acceptable.

Bracketing
An experimental design to test only the extremes of, for example, dosage strength. The design assumes that the extremes will be representative of all the samples between the extremes.

Change control (C/C)
A formal system by which qualified representatives of appropriate disciplines review proposed or actual changes that might affect a validated status. The intent is to determine the need for action that would ensure that the system is maintained in a validated state.

Commissioning
The setting up, adjustment and testing of equipment or a system to ensure that it meets all the requirements, as specified in the user requirement specification, and capacities as specified by the designer or developer. Commissioning is carried out before qualification and validation.

Corrective action (C/A)
Any action to be taken when the results of monitoring at a critical control point indicate a loss of control.

Critical
Having the potential to impact product quality or performance in a significant way.

Critical control point (CCP)
A step at which control can be applied and is essential to prevent or eliminate a pharmaceutical quality hazard or reduce it to an acceptable level.

Design qualification (DQ)
Documented evidence that the premises, supporting systems, utilities, equipment and processes have been designed in accordance with the requirements of good manufacturing practices (GMP).

Drug master file (DMF)
Detailed information concerning a specific facility, process or product submitted to the drug regulatory authority, intended for the incorporation into the application for marketing authorization.

Gap analysis
Identification of critical elements of a process which are available at the SU but are missing from the RU.

Good Manufacturing Practices (GMP)(4)
That part of quality assurance which ensures that pharmaceutical products are consistently produced and controlled to the quality standards appropriate to their intended use and as required by the marketing authorization.
Inter-company transfer
A transfer of technology between sites of different companies.

Intra-company transfer
A transfer of technology between sites of the same group of companies.

Inter-site transfer

[Note from Secretariat: proposal for a definition would be much appreciated.]

In-process control (IPC)
Checks performed during production in order to monitor and, if necessary, to adjust the process to ensure that the product conforms to its specifications. The control of the environment or equipment may also be regarded as a part of in-process control.

Installation qualification (IQ)
The performance of tests to ensure that the installations (such as machines, measuring devices, utilities and manufacturing areas) used in a manufacturing process are appropriately selected and correctly installed and operate in accordance with established specifications.

Operational qualification (OQ)
Documented verification that the system or subsystem performs as intended over all anticipated operating ranges.

Performance qualification (PQ)
Documented verification that the equipment or system operates consistently and gives reproducibility within defined specifications and parameters for prolonged periods. (In the context of systems, the term “process validation” may also be used.)

Process validation
Documented evidence which provides a high degree of assurance that a specific process will consistently result in a product that meets its predetermined specifications and quality characteristics.

Quality assurance (QA)
Quality assurance is a wide-ranging concept covering all matters that individually or collectively influence the quality of a product. It is the totality of the arrangements made with the objective of ensuring that pharmaceutical products are of the quality required for their intended use.

Quality control (QC)
All measures taken, including the setting of specifications, sampling, testing and analytical clearance, to ensure that starting materials, intermediates, packaging materials and finished pharmaceutical products conform with established specifications for identity, strength, purity and other characteristics.

Qualification
Action of proving and documenting that any premises, systems and equipment are properly installed, and/or work correctly and lead to the expected results. Qualification is often a part (the initial stage) of validation, but the individual qualification steps alone do not constitute process validation.

Quality risk management (QRM)
Quality risk management is a systematic process for the assessment, control, communication and review of risks to the quality of the pharmaceutical product across the product life-cycle.
Receiving unit (RU)
The involved disciplines at an organization where a designated product, process or method is expected to be transferred.

Sending unit (SU)
The involved disciplines at an organization where a designated product, process or method is expected to be transferred from.

Spiking
The addition of a known amount of a compound to a standard, sample or placebo, typically for the purpose of confirming the performance of an analytical procedure.

Standard operating procedure (SOP)
An authorized written procedure giving instructions for performing operations not necessarily specific to a given product or material (e.g. equipment operation, maintenance and cleaning; validation; cleaning of premises and environmental control; sampling and inspection). Certain SOPs may be used to supplement product-specific master and batch production documentation.

Technology transfer report
[Note from Secretariat: proposal for a definition would be much appreciated.
It should state that transfer is successful and that analysis of differences is included, etc.]

Transfer of technology (TOT)
A logical procedure that controls the transfer of an established process together with its documentation and professional expertise to a site capable of reproducing the process and its support functions to a predetermined level of performance.

Validation
Action of proving and documenting that any process, procedure or method actually and consistently leads to the expected results.

Validation master plan (VMP)
A high-level document that establishes an umbrella validation plan for the entire project and summarizes the manufacturer’s overall philosophy and approach, to be used for establishing performance adequacy. It provides information on the manufacturer’s validation work programme and defines details of and timescales for the validation work to be performed, including a statement of the responsibilities of those implementing the plan.

Validation protocol (or plan) (VP)
A document describing the activities to be performed in a validation, including the acceptance criteria for the approval of a manufacturing process – or a part thereof – for routine use.

Validation report (VR)
A document in which the records, results and evaluation of a completed validation programme are assembled and summarized. It may also contain proposals for the improvement of processes and/or equipment.
4. PRODUCTION: TRANSFER (PROCESSING, PACKAGING AND CLEANING)

4.1 It should be established at the outset whether the intention is to perform single-batch manufacture, continuous production or campaigns, and whether the RU can accommodate the intended production capacity.

4.2 Consideration should be given to the level and depth of detail to be transferred to support production and any further development or process optimization at the RU as intended under the transfer project plan.

4.3 Consideration should be given to the technical expertise, site technology, and site capabilities for the RU. It should be identified upfront by the SU any process robustness issues to put plans in place at the RU.

4.3 The SU and the RU should jointly develop a protocol for the transfer of relevant information related to the process under consideration from the SU to the RU, as well as the development of a comparable process at the RU.

Starting materials

4.4 The specifications and characteristics of the starting materials (APIs and excipients) to be used at the RU should be consistent with materials used at the SU. Any properties which are likely to influence the process or product should be identified and characterized.

Active pharmaceutical ingredients (API)

4.5 The SU should provide the RU with the open (applicant's) part of the API master file (APIMF or DMF or ASMF) and any relevant additional information on the API of importance for the manufacture of the pharmaceutical product. The information to be provided will depend on the dosage form transferred for manufacturing at the RU. The following information should be provided:

- manufacturer;
- step of the API to be transferred;
- flow chart of synthesis pathway, outlining the process, including entry points for raw materials, critical steps, process controls and intermediates;
- where relevant, definitive physical form of the API (including photomicrographs and other relevant data) and any polymorphic and solvate forms;
- solubility profile;
- if relevant, pH in solution;
- partition coefficient (including the method of determination);
- intrinsic dissolution rate (including the method of determination);
- particle size and distribution (including the method of determination);
- bulk physical properties, including data on bulk and tap density, surface area and porosity as appropriate;
- water content and determination of hygroscopicity, including water activity data and special handling requirements;
• microbiological considerations (including sterility, bacterial endotoxins and bioburden levels where the API supports microbiological growth) in accordance with regional pharmacopoeial requirements;
• specifications and justification for release and end-of-life limits;
• summary of stability studies conducted in conformity with current guidelines, including conclusions and recommendations on retest date;
• listing of potential and observed synthetic impurities, with data to support proposed specifications and typically observed levels;
• information on degradants, with a listing of potential and observed degradation products and data to support proposed specifications and typically observed levels;
• potency factor, indicating observed purity and justification for any recommended adjustment to the input quantity of API for product manufacturing, providing example calculations; and
• special considerations with implications for storage and/or handling, e.g. safety and environmental factors and sensitivity to heat, light or moisture.

Excipients

4.6 The excipients (4c) to be used have a potential impact on the final product. Their specifications as well as the DMF or equivalent information should, therefore, be made available by the SU for transfer to the RU site. The following information should be provided for all types of excipients:

• description of functionality, with justification for inclusion of any antioxidant, preservative or any excipient above recommended guidelines;
• manufacturer;
• specifications, i.e. monographs and additional information that may affect product processing or quality for compendia excipients, or a complete listing of specifications, including analytical methods and justification for release limits for non-compendial excipients.
• special considerations with implications for storage and/or handling, including but not limited to safety and environmental factors (e.g. as specified in material safety data sheets) and sensitivity to heat, light or moisture solubility; and
• regulatory considerations, i.e. compendial status and appropriate regulatory information for non-compendial excipients; information on residual solvents or organic volatile impurities; and documentation to support compliance with transmissible animal spongiform encephalopathy certification requirements (where applicable).

4.7 Depending on the type of dosage form, the SU should provide relevant information on physical properties of excipients to the RU, including:

• definitive form (particularly for solid and inhaled dosage forms);
• solubility profile (particularly for inhaled and transdermal dosage forms);
• partition coefficient, including the method of determination (for transdermal dosage forms);
• intrinsic dissolution rate, including the method of determination (for transdermal dosage forms);
• particle size and distribution, including the method of determination (for solid, inhaled and transdermal dosage forms);
• bulk physical properties, including data on bulk and tap density, surface area and porosity as appropriate (for solid and inhaled dosage forms);
• compaction properties (for solid dosage forms);
• melting point range (for semi-solid/topical dosage forms);
• pH range (for parenteral, semi-solid/topical, liquid and transdermal dosage forms);
• ionic strength (for parenteral dosage forms);
• specific density/gravity (for parenteral, semi-solid/topical, liquid and transdermal dosage forms);
• viscosity and/or viscoelasticity (for parenteral, semi-solid/topical, liquid and transdermal dosage forms);
• osmolarity (for parenteral dosage forms);
• water content and determination of hygroscopicity, including water activity data and special handling requirements (for solid and inhaled dosage forms);
• moisture content range (for parenteral, semi-solid/topical, liquid and transdermal dosage forms);
• microbiological considerations in accordance with regional pharmacopoeial requirements (for parenteral, semi-solid/topical, liquid, inhaled and transdermal dosage forms); and
• information on adhesives supporting compliance with peel, sheer and adhesion design criteria (for transdermal dosage forms).

Process and FPP information

4.8 The SU should provide a detailed characterization of the product, including its qualitative and quantitative composition, physical description, method of manufacture, in-process controls, control method and specifications, packaging components and configurations, and any special safety and handling considerations.

4.9 The SU should provide any information on the history of process development which may be required to enable the RU to perform any further development and/or process optimization intended after successful transfer. Such information may include the following:

• information on clinical development, e.g. information on the rationale for the synthesis, route and form selection, technology selection, equipment, clinical tests, and product composition;
• information on scale-up activities: process optimization, statistical optimization of critical process parameters, critical quality attributes, pilot report and/or information on pilot-scale development activities indicating the number and disposition of batches manufactured; and
information or report on full-scale development activities, indicating the number and disposition of batches manufactured, and deviation and change control reports which led to the current manufacturing.

the SU should provide a change control log indicating any changes to the process or primary packaging or analytical methods as a part of process optimization or improvement.

4.10 The SU should provide to the RU information on any health, safety and environmental issues associated with the manufacturing processes to be transferred, and resulting implications, e.g. need for gowning or protective clothing.

4.11 The SU should provide to the RU information on current processing and testing, including but not limited to:

- a detailed description of facility requirements and equipment;
- process technology selection;
- information on starting materials, applicable material safety data sheets (MSDs) and storage requirements for raw materials and finished products;
- description of manufacturing steps (narrative and process maps or flow charts), including qualification of in-processing hold times and conditions, order and method of raw material addition and bulk transfers between processing steps;
- description of analytical methods;
- in-process controls, including, e.g. identification of critical performance aspects for specific dosage forms, identification of process control points, product quality attributes and qualification of critical processing parameter ranges, statistical process control (SPC) charts;
- validation information, e.g. validation plans and reports, and annual product reviews;
- stability information; and
- an authorized set of protocols and work instructions for manufacturing; and
- environmental conditions or any special requirement needed for the facility or equipment depending on the nature of the product to be transferred.

4.12 Based on the information received from the SU, the RU should consider its own capability to manufacture and pack the product to the required standards and should develop relevant plant operating procedures and documentation before the start of the transfer. Process development at the RU should address the following tasks:

- comparison and assessment of suitability and qualification of facility and equipment;
- description of manufacturing process and flow of personnel and of materials at RU (narrative and/or process maps or flow charts);
- determination of critical steps in manufacture, including hold times, end-points, sampling points and sampling techniques (4f);
- writing and approval of SOPs for all production operations (e.g. dispensing, granulation/blending/solution preparation, tablet compression, tablet coating,
encapsulation, liquid filling, primary and secondary packaging and in-process quality control), packaging, cleaning, testing and storage;

- evaluation of stability information, with generation of site-specific stability data if required (5); and
- compliance with regulatory requirements for any changes made, e.g. in terms of batch size.

Packaging

4.13 The transfer of packaging operations should follow the same procedural patterns as those of the production transfer.

4.14 Information on packaging to be transferred from the SU to the RU include specifications for a suitable container/closure system, as well as any relevant additional information on design, packing, processing or labelling requirements needed for qualification of packaging components at the RU.

4.15 For quality control testing of packaging components, specifications should be provided for drawings, artwork, material (for example, glass, card, fibre board,).

4.16 Based on the information provided, the RU should perform a suitability study for initial qualification of the packaging components. Packaging is considered suitable if it provides adequate protection (preventing degradation of the drug due to environmental influences), safety (absence of undesirable substances released into the product), compatibility (absence of interaction possibly affecting drug quality) and performance (functionality in terms of drug delivery).

Cleaning

4.17 During the manufacturing process, pharmaceutical products and APIs can be contaminated by other pharmaceutical products or APIs if processing different products. To minimize the risk of contamination and cross-contamination, operator exposure and environmental effects, adequate cleaning procedures are essential.

4.18 The SU should provide information on cleaning procedures in use at the SU to minimize cross-contamination due to residues from previous manufacturing steps, operator exposure and environmental impact, including:

- solubility information of active ingredients, excipients and vehicles;
- minimum therapeutic doses of active ingredients;
- therapeutic category and toxicological assessment;
- existing cleaning procedures;
- cleaning validation reports (chemical and microbiological);
- information on cleaning agents used (efficacy, evidence that they do not interfere with analytical testing for residues of actives); and
- recovery studies to validate the sampling methodology.

4.19 Prior to the transfer the SU should provide information on limits for product residues, and the rationale for limit selection.
4.20 Based on the information provided by the SU, cleaning procedures should be designed at the RU, taking into account relevant characteristics of the starting materials (e.g. potency, toxicity, solubility, corrosiveness, temperature sensitivity), manufacturing equipment design and configuration, cleaning agent and residue, and disposal of rinsing process.

Commissioning of processing, packaging and cleaning systems

4.21 Once approved manufacturing, packaging, cleaning, testing and storage procedures have been designed at the RU, systems should be set up and commissioned, and initial trial batch(es) should be produced. All critical processing parameters and finished product specifications should be assessed.

4.22 Once process capability has been demonstrated at the RU, assuring that the product, process or method at the RU meets predefined and justified specifications, process validation and cleaning validation can be carried out. Process and cleaning validation may be performed concurrently with demonstration of process capability.

5. **QUALITY CONTROL: ANALYTICAL METHOD TRANSFER**

5.1 Transfer of analytical methods should accommodate all the analytical testing required to demonstrate compliance of the product to be transferred with the registered specification (3).

5.2 Transfer of analytical methods used to test pharmaceutical products, starting materials, packaging components, and cleaning (residue) samples, need to be at the RU or a third laboratory before process validation studies of manufacturing operations can be carried out.

5.3 A protocol defining the steps should be prepared for analytical methods transfer. The analytical methods transfer protocol should describe the objective; scope; responsibilities of the SU and the RU; a specification of material and methods; the experimental design and acceptance criteria; documentation (including information to be supplied with the results, and report forms to be used if any); deviations; references; signed approval; and details of reference samples (starting materials, intermediates and finished products).

5.4 The SU's responsibilities for the transfer of analytical methods are to:

- provide method-specific training for analysts and other quality control staff, if required;
- assist in analysis of quality control testing results;
- define and justify all to be transferred for testing a given product, starting material or cleaning sample;
- define experimental design, sampling methods and acceptance criteria;
- provide any validation reports for methods under transfer, and demonstrate their robustness;
- provide a specification for the equipment used (part of validation report, if available) and any standard reference samples; and
• provide approved procedures used in testing.

5.5 The RU’s responsibilities are to:
• review analytical methods provided by the SU, and formally agree on acceptance criteria before execution of the transfer protocol;
• ensure that the necessary equipment for quality control is available and qualified at the RU site. Equipment should be replicated where possible, but it is accepted that different models, e.g. spectrometers and chromatographs, could already be in place;
• ensure that adequately trained and experienced personnel is in place for analytical testing;
• provide a documentation system capable of recording receipt and testing of samples to the required specification using approved test methods, and of reporting, recording and collating data and designation of status (approved, rejected, quarantine);
• execute the transfer protocol; and
• perform the appropriate level of validation to support the implementation of the methods.

5.6 Appropriate training should be carried out and all training activities and outcomes should be documented.

5.7 Examples of relevant tests applicable to APIs and FPPs include:
• identity;
• assay for potency;
• uniformity of content (finished pharmaceutical products);
• impurities and degradation products;
• physical criteria;
• cleaning verification to assure that residues and viable organisms on equipment and critical areas of the work environment are below specified limits; and
• microbiological testing (for APIs which promote biological growth).

5.8 Reference to compendial monographs (e.g. The International Pharmacopoeia (3), European Pharmacopoeia, British Pharmacopoeia and United States Pharmacopeia), where available, is expected. Typically, transfer of compendial methods is only necessary if additional detail needs to be described or if critical parameters need to be specified to obtain accurate results.

5.9 Suggested experimental designs and acceptance criteria for the main analytical testing methods are shown in Table 1.
Table 1. Suggested experimental designs and acceptance criteria for analytical testing

<table>
<thead>
<tr>
<th>Test</th>
<th>Considerations for transfer</th>
<th>Replication of tests</th>
<th>Set-up</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>Transfer should focus on sample preparation, instruments, data interpretation. Acceptable to include in assay transfer where relevant</td>
<td>One determination usually sufficient to demonstrate equivalence</td>
<td>Direct Statistically derived</td>
<td>Two one-sided t-tests with inter-site differences <=2%, 95% confidence</td>
</tr>
<tr>
<td>Assay for potency</td>
<td>- Non-specific assay should not be used for stability testing. - Bracketing may be appropriate for multiple strengths</td>
<td>At each site: 2 analysts × 3 lots, in triplicate (=18 per site)</td>
<td>Comparison of mean and variability</td>
<td>Mean at RU within +/-3% of mean at SU; comparison of relative st. dev. Two one-sided t-tests with inter-site differences <=3%, 95% confidence</td>
</tr>
<tr>
<td>Content uniformity</td>
<td>If method is equivalent to assay method, separate transfer is not usually required</td>
<td>At each site: 2 analysts, × 1 lot (=2 per site)</td>
<td>Different sets of instruments and columns Independent solution preparation</td>
<td>Mean at RU within +/-5% of mean at SU; comparison of relative st. dev. Two one-sided t-tests with inter-site differences <=3%, 95% confidence</td>
</tr>
<tr>
<td>Dissolution</td>
<td>Bracketing may be appropriate for multiple strengths</td>
<td>6 units (12 if not routine at RU, and for extended release products)</td>
<td>Different sets of instruments and columns Independent solution preparation</td>
<td>Mean at RU within +/-5% of mean at SU; compare profile (e.g. F²), or Compare data at Q time points as for assay</td>
</tr>
<tr>
<td>Cleaning verification (recovery of residues from surfaces)</td>
<td>Confirm that same swabbing material is used at SU and RU</td>
<td>Use spiked samples, with levels within 3× validated st. dev. or within +/-10% of specification (whichever is the greater)</td>
<td>- All samples spiked above specification should fail - 90% of samples spiked below specification should pass</td>
<td></td>
</tr>
<tr>
<td>Microbiological testing (qualitative and quantitative limit tests)</td>
<td>- Execute common on-site validation protocol: rationale; method identity; validation parameters; data summary; acceptance criteria; methods of compiling and analysing data; handling of out-of-specification results; follow-up requirements - Use same materials, techniques, inoculum preparation</td>
<td>Validation in triplicate</td>
<td>Use different lots for each validation exercise - Qualitative: Demonstrate recovery of microorganisms - Quantitative: Recovery levels within acceptance limits specified in protocol</td>
<td></td>
</tr>
</tbody>
</table>

[Note from Secretariat: We should appreciate feedback on this table.]
Impurity, degradation, residual solvents
- Confirm response factors for calculation relative to drug peak;
- Confirm limit of quantitation at RU;
- Compare chromatograms
- Compare accuracy and precision for spiking experiments

At each site: 2 analysts × 3 lots, in duplicate (in triplicate if done together with assay)
- Different days, different sets of instruments and columns
- Use samples of similar age, homogeneity, packaging, storage
- Use spiked samples if necessary

(For low levels:) Values at RU within +/-25% of values at SU, or Mean at RU within +/- 0.05% of mean at SU
(For moderately high levels:) Two one-sided t-tests, differences <=10%, 95% confidence

* [Note from WHO Secretariat: are these figures correct?]

5.10 The SU and the RU should execute the transfer protocol and jointly prepare a transfer report. The points to be addressed in the analytical methods transfer report are listed in this guideline.

6. ORGANIZATION AND MANAGEMENT

6.1 Organization and management of a successful technology transfer need to assure that the following four main steps have been executed and documented:

- presence of specifications and acceptance criteria of the product, process or method to be transferred;
- establishment of adequate facilities, equipment, systems and trained staff;
- establish procedures and protocols for the transfer itself and for reproduction of the product, process or method to be transferred; and
- data supporting the successful reproduction of the product, process or method by the RU.

6.2 There should be a project management plan which identifies and controls all the necessary activities identified at the start of the undertaking.

6.3 Both the SU and the RU are responsible for specifically allotted tasks within their unit, with others being shared between them. The actual transfer should follow an authorized protocol, assuring that all tasks are executed and documented.

6.4 The transfer protocol should list the intended sequential stages of the transfer. The protocol should include:

- objective;
- scope;
- key personnel and their responsibilities;
- a parallel comparison of materials, methods and equipment;
- the transfer stages with documented evidence that each critical stage has been satisfactorily accomplished before the next commences;
- identification of critical control points;
• experimental design and acceptance criteria for analytical methods;
• information on trial production batches, qualification batches and process validation;
• change control for any process deviations encountered;
• references;
• assessment of end-product;
• reference samples of active ingredients, intermediates and finished products; and
• conclusion, including signed-off approval by project manager.

6.5 The SU should provide the necessary validation documentation for the process and its support functions. In the majority of cases an established process is transferred, and such documentation is already available.

6.6 The SU should provide criteria and information on hazards and critical steps associated with the product, process or method to be transferred, to serve as a basis for a quality risk management exercise at the RU (6, 7, 4a).

6.7 The SU should assess the suitability and degree of preparedness of the RU before transfer in terms of premises, equipment and support services (e.g. purchasing and inventory control mechanisms, quality control procedures, documentation, computer validation, site validation, equipment qualification, water for pharmaceutical production, waste management).

6.8 The SU and the RU should jointly verify that the following, satisfactorily completed validation protocols are available:

• installation qualification (IQ) and operational qualification (OQ) data for manufacturing and packaging equipment at the RU site and analytical equipment; and
• qualification of the rooms for both manufacture and packaging at the RU site.

6.9 The SU and the RU should jointly implement training programmes specific to the product, process or method to be transferred, e.g. on analytical methods or equipment usage, and assess training outcomes.

6.10 The SU and the RU should jointly execute the transfer protocol according to a checklist and/or flow diagram showing the sequence of steps to be carried out to effect an efficient transfer.

6.11 Any changes and adaptations made during the course of the technology transfer should be fully documented.

6.12 The SU and the RU should jointly document the execution of the transfer protocol into a transfer of technology summary in a report.
7. **PERSONNEL**

Project team

7.1 Any transfer project will be managed by a team comprised of members from both sites with clearly defined key responsibilities. The team shall be drawn from members of relevant disciplines from both the SU and RU sites.

7.2 The team or project leader is responsible for guiding the project during the transfer operations.

7.3 The team members should have the necessary qualifications and experience to manage their particular aspect of the transfer. The disciplines involved include but are not limited to site engineering and maintenance, validation, manufacturing and quality control.

7.4 If not part of the team, quality assurance and regulatory affairs personnel should be available to support and advise the project throughout.

Training

7.5 The RU, assisted by the SU as required, should ensure that trained personnel are in place before validation of the process to be transferred.

7.6 The RU, assisted by the SU as required, should perform a skills assessment and gap analysis to identify training needs associated with product-specific activities such as operation and maintenance of equipment, processing and testing. Existing training records should be reviewed and a programme drawn up based on discrepancies identified in the gap analysis exercise.

7.7 The RU, assisted by the SU as required, should develop training protocols for any new procedures, describing the objective, methods of training and evidence of success of the training.

7.8 The RU, assisted by the SU as required, should provide a training programme and assessment criteria for relevant personnel, e.g. engineers, production technicians, QC technicians.

7.9 After execution of the training protocols, the SU and the RU should jointly prepare a report confirming that all training has been successfully accomplished.

8. **PREMISES AND EQUIPMENT**

Premises

8.1 For specific transfers (e.g. hormones, betalactames, highly active products or completely new technologies) the SU should provide information to the RU on the layout, construction and finish of all buildings and services (4g,4h) (heating, ventilation and air-conditioning (HVAC), temperature, relative humidity, water, power, compressed air) impacting the product, process or method to be transferred.

8.2 The SU should provide information on relevant health, safety and environmental issues, including:
• inherent risks of the manufacturing processes (e.g. reactive chemical hazards, exposure limits, fire and explosion risks);
• health and safety requirements to minimize operator exposure (e.g. atmospheric containment of pharmaceutical dust);
• emergency planning considerations (e.g. in case of gas or dust release, spillage, fire and firewater run-off); and
• identification of waste streams and provisions for re-use, recycling and/or disposal.

Equipment

8.3 The SU should provide a list of equipment, makes and models involved in the manufacture, filling, packing and/or control of the product, process or method to be transferred, together with existing qualification and validation documentation. Relevant documentation may include:

- drawings;
- manuals;
- maintenance logs;
- calibration logs; and
- procedures (e.g. regarding equipment set up, operation, cleaning, maintenance, calibration, storage).

8.4 The RU should review the information provided by the SU together with its own inventory list including the qualification status (IQ, OQ, PQ) of all equipment and systems, and perform a side-by-side comparison of equipment at the two sites in terms of their functionality, makes, models and qualification status.

8.5 The RU should perform a gap analysis to identify requirements for adaptation of existing equipment, or acquisition of new equipment, to enable the RU to reproduce the process being transferred. GMP requirements should be satisfied, and intended production volumes and batch sizes (e.g. same, scaled-up or campaign) should be considered. Factors to be compared include:

- minimum and maximum capacity;
- material of construction;
- critical operating parameters;
- critical equipment components (e.g. filters, screens, temperature/pressure sensors);
- critical quality attribute; and
- range of intended use.

8.6 The facility- and building-specific location of all equipment at the RU should be considered at the time of drawing up process maps or flow charts of the manufacturing process to be transferred, including flow of personnel and material.

8.7 The impact of manufacturing new products on products currently manufactured with the same equipment should be determined.
8.8 Where existing producing equipment needs to be adapted to be capable of reproducing the process being transferred, a detailed development project should be included in the transfer protocol.

8.9 Applicable operating procedures for set-up, operation, cleaning, storage and maintenance should be developed by the conclusion of OQ. Supporting documents such as drawings of equipment and piping installations, manuals, maintenance logs and calibration logs should be retained.

9. DOCUMENTATION

9.1 The documentation required for the transfer project itself is wide ranging. Examples of documentation commonly required are summarized in Table 1.

9.2 The documented evidence that the transfer of technology has been considered successful should be formalized and stated in a technology transfer summary report approved both by the SU and the RU. That report should summarize the scope of the transfer, the critical parameters as obtained in the SU and RU (preferably in a tabulated format) and the final conclusions of the transfer. Possible discrepancies should be listed and appropriate actions, where needed, taken to resolve them.
Table 2. Examples of documentation for transfer of technology

<table>
<thead>
<tr>
<th>Key task</th>
<th>Documentation provided by SU</th>
<th>Transfer documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project definition</td>
<td></td>
<td>Project implementation plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOT protocol</td>
</tr>
<tr>
<td>Team development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility assessment</td>
<td>Plans and layout of facility, buildings (construction, finish) Qualification status (DQ, IQ, OQ) and reports</td>
<td>Side-by-side comparison with RU facility and buildings; gap analysis Qualification protocol and report</td>
</tr>
<tr>
<td>HS&E assessment</td>
<td>Product-specific waste management plans Contingency plans</td>
<td></td>
</tr>
<tr>
<td>Skill set analysis/training</td>
<td>SOPs and training records (product-specific operations, analysis, testing)</td>
<td>Training protocols, assessment results</td>
</tr>
<tr>
<td>Analytical method transfer</td>
<td>Analytical method specifications and validation, including in-process quality control</td>
<td>Analytical methods transfer protocol and report</td>
</tr>
<tr>
<td>Starting material evaluation</td>
<td>Specifications and additional information on APIs, excipients</td>
<td></td>
</tr>
<tr>
<td>Equipment selection and transfer</td>
<td>Inventory list of all equipment and systems, including makes, models, qualification status (IQ, OQ, PQ) Drawings, manuals, logs, SOPs (e.g. set-up, operation, cleaning, maintenance, calibration, storage)</td>
<td>Side-by-side comparison with RU equipment (makes, models, qualification status) Gap analysis Qualification and validation protocol and report</td>
</tr>
<tr>
<td>Process transfer: manufacturing and packaging</td>
<td>Reference batches (clinical, dossier, biobatches) Development report (manufacturing process rationale) History of critical analytical data Rationale for specifications Change control documentation Critical manufacturing process parameters Process validation reports Drug master file API validation status report(s) Product stability data Current master batch manufacturing and packaging records List of all batches produced List of pivotal batches Deviation reports Investigations, complaints, recalls Annual product review</td>
<td>History of process development at RU Experiences at RU should be recorded for future reference Provisional batch manufacturing document (RU to develop) Provisional batch packaging document (RU to develop) Description of process at RU (narrative, process map, flow chart) Process validation protocol and report</td>
</tr>
<tr>
<td>Cleaning</td>
<td>Cleaning validation, including: Solubility information; therapeutic doses; category (toxicology); existing cleaning SOPs; validation reports - chemical and micro; agents used; recovery study</td>
<td>Product- and site-specific cleaning SOPs at RU Cleaning validation protocol and report</td>
</tr>
<tr>
<td>Verification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusion/Sign-off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Note from Secretariat: We should appreciate feedback on this table.]
10. QUALIFICATION AND VALIDATION

General

10.1 The extent of qualification/validation (4i) to be performed should be determined on the basis of risk management principles.

10.2 Qualification and validation should be documented.

11. BIBLIOGRAPHY

Note 1: An amendment of WHO stability guidelines was adopted in 2006 to reflect conditions for Zone IV as follows:
- Zone IVa (30 degrees Celsius and 65% relative humidity); and
- Zone IVb (30 degrees Celsius and 75% relative humidity).

Note 2: Working document QAS/06.179/Rev.2 ("Draft stability testing of active pharmaceutical ingredients and pharmaceutical products") is currently under discussion for revision of the WHO stability guidelines.

[Note from Secretariat: As portions of the main text of the report have been shifted the references will be put in correct order in the final version of the document.]
