Interest in micronutrient malnutrition has increased greatly over the last few years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns.

Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry.

The document is organized into four complementary sections. Part I introduces the concept of food fortification as a potential strategy for the control of micronutrient malnutrition. Part II summarizes the prevalence, causes, and consequences of micronutrient deficiencies, and the public health benefits of micronutrient malnutrition control. It lays the groundwork for public health personnel to assess the magnitude of the problem and the potential benefits of fortification in their particular situation. Part III provides technical information on the various chemical forms of micronutrients that can be used to fortify foods, and reviews prior experiences of their use in specific food vehicles. Part IV describes the key steps involved in designing, implementing, and sustaining fortification programmes. Starting with a determination of the amount of nutrients to be added to foods, this process continues with the implementation of monitoring and evaluating systems (including quality control/quality assurance procedures), followed by an estimation of cost-effectiveness and cost–benefit ratios. The importance of, and strategies for, regulation and international harmonization, communication, advocacy, consumer marketing and public education are also explained in some detail.
Interest in micronutrient malnutrition has increased greatly over the last few years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns.

Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry.

The document is organized into four complementary sections. Part I introduces the concept of food fortification as a potential strategy for the control of micronutrient malnutrition. Part II summarizes the prevalence, causes, and consequences of micronutrient deficiencies, and the public health benefits of micronutrient malnutrition control. It lays the groundwork for public health personnel to assess the magnitude of the problem and the potential benefits of fortification in their particular situation. Part III provides technical information on the various chemical forms of micronutrients that can be used to fortify foods, and reviews prior experiences of their use in specific food vehicles. Part IV describes the key steps involved in designing, implementing, and sustaining fortification programmes. Starting with a determination of the amount of nutrients to be added to foods, this process continues with the implementation of monitoring and evaluating systems (including quality control/quality assurance procedures), followed by an estimation of cost-effectiveness and cost–benefit ratios. The importance of, and strategies for, regulation and international harmonization, communication, advocacy, consumer marketing and public education are also explained in some detail.
GUIDELINES ON FOOD FORTIFICATION WITH MICRONUTRIENTS

World Health Organization

Food and Agricultural Organization of the United Nations
Guidelines on food fortification with micronutrients

Edited by

Lindsay Allen
University of California,
Davis, CA, United States of America

Bruno de Benoist
World Health Organization,
Geneva, Switzerland

Omar Dary
A2Z Outreach – The USAID Micronutrient Leadership and Support and Child Blindness Activity,
Washington, DC, United States of America

Richard Hurrell
Swiss Federal Institute of Technology,
Zurich, Switzerland
WHO Library Cataloguing-in-Publication Data

Guidelines on food fortification with micronutrients/edited by Lindsay Allen . . . [et al.].

ISBN 92 4 159401 2 (NLM classification: QU 145)

This publication is supported by funding from GAIN, the Global Alliance for Improved Nutrition. While GAIN supports the work of this publication, it cannot warrant or represent that the information contained in these Guidelines is complete and correct and GAIN shall not be liable whatsoever for any damage incurred as a result of its use.

© World Health Organization and Food and Agriculture Organization of the United Nations 2006

All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: bookorders@who.int). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: permissions@who.int), or to Chief, Publishing and Multimedia Service, Information Division, Food and Agriculture Organization of the United Nations, Viale delle di Caracalla, 00100 Rome, Italy or by email to copyright@fao.org.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization and the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization and the Food and Agriculture Organization of the United Nations in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization and the Food and Agriculture Organization of the United Nations to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization and the Food and Agriculture Organization of the United Nations be liable for damages arising from its use.

Cover illustration by Victoria Menezes Miller
Typeset in China, Hong Kong Special Administrative Region
Printed in France
Contents

List of tables	x
List of figures	xiii
Foreword	xiv
Preface	xviii
List of authors	xxi
Acknowledgements	xxiii
Abbreviations	xxiv
Glossary	xxvi

Part I. The role of food fortification in the control of micronutrient malnutrition 1

Chapter 1 Micronutrient malnutrition: a public health problem 3
 1.1 Global prevalence of micronutrient malnutrition 3
 1.2 Strategies for the control of micronutrient malnutrition 11
 1.2.1 Increasing the diversity of foods consumed 12
 1.2.2 Food fortification 13
 1.2.3 Supplementation 13
 1.2.4 Public health measures 14
 1.3 Food fortification in practice 14
 1.3.1 Efficacy trials 15
 1.3.2 Effectiveness evaluations 17
 1.4 Advantages and limitations of food fortification as a strategy to combat MNM 20

Chapter 2 Food fortification: basic principles 24
 2.1 Terminology 24
 2.1.1 Food fortification 24
 2.1.2 Related codex terminology 25
 2.2 Types of fortification 26
 2.2.1 Mass fortification 27
 2.2.2 Targeted fortification 27
 2.2.3 Market-driven fortification 28
 2.2.4 Other types of fortification 29
 2.3 Legal considerations: mandatory versus voluntary fortification 31
 2.3.1 Mandatory fortification 31
 2.3.2 Voluntary fortification 33
 2.3.3 Special voluntary fortification 35
2.3.4 Criteria governing the selection of mandatory or voluntary fortification 35

Part II. Evaluating the public health significance of micronutrient malnutrition 39

Introduction 41

Chapter 3 Iron, vitamin A and iodine 43
 3.1 Iron deficiency and anaemia 43
 3.1.1 Prevalence of deficiency 43
 3.1.2 Risk factors for deficiency 44
 3.1.3 Health consequences of deficiency and benefits of intervention 48
 3.2 Vitamin A 48
 3.2.1 Prevalence of deficiency 49
 3.2.2 Risk factors for deficiency 49
 3.2.3 Health consequences of deficiency and benefits of intervention 51
 3.3 Iodine 52
 3.3.1 Prevalence of deficiency 52
 3.3.2 Risk factors for deficiency 54
 3.3.3 Health consequences of deficiency and benefits of intervention 54

Chapter 4 Zinc, folate, vitamin B₁₂ and other B vitamins, vitamin C, vitamin D, calcium, selenium and fluoride 57
 4.1 Zinc 57
 4.1.1 Prevalence of deficiency 57
 4.1.2 Risk factors for deficiency 59
 4.1.3 Health consequences of deficiency and benefits of intervention 61
 4.2 Folate 61
 4.2.1 Prevalence of deficiency 61
 4.2.2 Risk factors for deficiency 63
 4.2.3 Health consequences of deficiency and benefits of intervention 63
 4.3 Vitamin B₁₂ 64
 4.3.1 Prevalence of deficiency 65
 4.3.2 Risk factors for deficiency 66
 4.3.3 Health consequences of deficiency and benefits of intervention 67
 4.4 Other B vitamins (thiamine, riboflavin, niacin and vitamin B₆) 67
 4.4.1 Thiamine 68
 4.4.2 Riboflavin 71
 4.4.3 Niacin 73
 4.4.4 Vitamin B₆ 76
 4.5 Vitamin C 78
 4.5.1 Prevalence of deficiency 78
 4.5.2 Risk factors for deficiency 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.3</td>
<td>Health consequences of deficiency and benefits of intervention</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>Vitamin D</td>
<td>81</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Prevalence of deficiency</td>
<td>82</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Risk factors for deficiency</td>
<td>83</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Health consequences of deficiency and benefits of intervention</td>
<td>84</td>
</tr>
<tr>
<td>4.7</td>
<td>Calcium</td>
<td>84</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Prevalence of deficiency</td>
<td>84</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Risk factors for deficiency</td>
<td>85</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Health consequences of deficiency and benefits of intervention</td>
<td>86</td>
</tr>
<tr>
<td>4.8</td>
<td>Selenium</td>
<td>86</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Prevalence of deficiency</td>
<td>86</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Risk factors for deficiency</td>
<td>88</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Health consequences of deficiency and benefits of intervention</td>
<td>88</td>
</tr>
<tr>
<td>4.9</td>
<td>Fluoride</td>
<td>89</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Prevalence of dental caries</td>
<td>89</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Risk factors for low intakes</td>
<td>90</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Health consequences of low intakes and benefits of intervention</td>
<td>90</td>
</tr>
<tr>
<td>4.10</td>
<td>Multiple micronutrient deficiencies</td>
<td>91</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Prevalence and risk factors</td>
<td>91</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Health consequences and benefits of intervention</td>
<td>91</td>
</tr>
</tbody>
</table>

Part III. Fortificants: physical characteristics, selection and use with specific food vehicles

Introduction

Chapter 5 Iron, vitamin A and iodine

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Iron</td>
<td>97</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Choice of iron fortificant</td>
<td>97</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Methods used to increase the amount of iron absorbed from fortificants</td>
<td>100</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Novel iron fortificants</td>
<td>102</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Sensory changes</td>
<td>104</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Experience with iron fortification of specific foods</td>
<td>104</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Safety issues</td>
<td>110</td>
</tr>
<tr>
<td>5.2</td>
<td>Vitamin A and β-carotene</td>
<td>111</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Choice of vitamin A fortificant</td>
<td>111</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Experience with vitamin A fortification of specific foods</td>
<td>112</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Safety issues</td>
<td>117</td>
</tr>
<tr>
<td>5.3</td>
<td>Iodine</td>
<td>118</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Choice of iodine fortificant</td>
<td>118</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Experience with iodine fortification of specific foods</td>
<td>119</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Safety issues</td>
<td>122</td>
</tr>
</tbody>
</table>
7.3 Using the EAR cut-point method to set goals and to evaluate the impact and safety of fortification
 7.3.1 Deciding on an acceptable prevalence of low intakes
 7.3.2 Calculating the magnitude of micronutrient additions
 7.3.3 Adaptations to the EAR cut-point methodology for specific nutrients
 7.3.4 Bioavailability considerations
7.4 Other factors to consider when deciding fortification levels
 7.4.1 Safety limits
 7.4.2 Technological limits
 7.4.3 Cost limits
7.5 Applying the EAR cut-point methodology to mass, targeted and market-driven fortification interventions
 7.5.1 Mass fortification
 7.5.2 Targeted fortification
 7.5.3 Market-driven fortification

Chapter 8 Monitoring and evaluation
 8.1 Basic concepts and definitions
 8.2 Regulatory monitoring
 8.2.1 Internal monitoring (quality control/quality assurance)
 8.2.2 External monitoring (inspection and technical auditing)
 8.2.3 Commercial monitoring
 8.3 Household monitoring
 8.3.1 Aims and objectives
 8.3.2 Methodological considerations
 8.4 Impact evaluation
 8.4.1 Impact evaluation design
 8.4.2 Methodological considerations
 8.5 What is the minimum every fortification programme should have in terms of a monitoring and evaluation system?

Chapter 9 Estimating the cost-effectiveness and cost–benefit of fortification
 9.1 Basic concepts and definitions
 9.1.1 Cost-effectiveness
 9.1.2 Cost–benefit analysis
 9.2 Information needs
 9.2.1 Estimating unit costs
 9.2.2 Cost-effectiveness analyses
 9.2.3 Cost–benefit analysis
 9.3 Estimating the cost-effectiveness and cost–benefit of vitamin A, iodine and iron interventions: worked examples
9.3.1 Vitamin A supplementation: a cost-effectiveness calculation 217
9.3.2 Iodine: a cost–benefit analysis 219
9.3.3 Iron fortification: a cost–benefit analysis 220
9.3.4 Iron supplementation: a cost-effectiveness calculation 222

Chapter 10 Communication, social marketing, & advocacy in support of food fortification programmes 224
10.1 Communication strategies: the options 225
10.1.1 Education 226
10.1.2 Laws, policy and advocacy: communicating with policy-makers 227
10.1.3 Social marketing 229
10.2 Communication to support social marketing programmes 230
10.2.1 Building collaborative partnerships 232
10.2.2 Developing messages for government leaders 234
10.2.3 Developing messages for industry leaders 235
10.2.4 Developing consumer marketing strategies and consumer education 237
10.3 Sustaining the programme 238

Chapter 11 National food law 240
11.1 The International context 240
11.2 National food law and fortification 241
11.2.1 Forms of food law: legislation, regulation and complementary measures 241
11.2.2 Regulating food fortification: general considerations 243
11.3 Mandatory fortification 243
11.3.1 Composition 244
11.3.2 Labelling and advertising 247
11.3.3 Trade considerations 249
11.4 Voluntary fortification 250
11.4.1 Composition 251
11.4.2 Labelling and advertising 256
11.4.3 Trade considerations 257

References 259
Further reading 280
Annexes 283

Annex A Indicators for assessing progress towards the sustainable elimination of iodine deficiency disorders 285
Annex B The international resource laboratory for iodine network 287
Annex C Conversion factors for calculating Estimated Average Requirements (EARs) from FAO/WHO Recommended Nutrient Intakes (RNIs) 291
Annex D A procedure for estimating feasible fortification levels for a mass fortification programme 294
Annex E A quality control and monitoring system for fortified vegetable oils: an example from Morocco 313
Annex F The Codex Alimentarius and the World Trade Organization Agreements 318
Index 331
List of tables

Table 1.1 Prevalence of the three major micronutrient deficiencies, by WHO region 4
Table 1.2 Micronutrient deficiencies: prevalence, risk factors and health consequences 6
Table 2.1 Targeted food fortification programmes 28
Table 2.2 Foods suited to fortification at the household level 30
Table 3.1 Indicators for assessing iron status at the population level 45
Table 3.2 Criteria for assessing the public health severity of anemia 47
Table 3.3 Classification of usual diets according to their ironbioavailability 47
Table 3.4 Indicators for assessing vitamin A status at the population level 50
Table 3.5 Criteria for assessing the public health severity of vitamin A deficiency 51
Table 3.6 Indicators for assessing iodine status at the population level 53
Table 3.7 Criteria for assessing the public health severity of iodine deficiency 54
Table 3.8 The spectrum of iodine deficiency disorders 55
Table 4.1 Indicators for assessing zinc status at the population level 58
Table 4.2 Classification of usual diets according to the potential bioavailability of their zinc content 60
Table 4.3 Indicators for assessing folate (vitamin B₉) status at the population level 62
Table 4.4 Indicators for assessing vitamin B₁₂ (cobalamin) status at the population level 65
Table 4.5 Indicators for assessing thiamine (vitamin B₁) status at the population level 69
Table 4.6 Proposed criteria for assessing the public health severity of thiamine deficiency 70
Table 4.7 Indicators for assessing riboflavin (vitamin B₂) status at the population level 72
Table 4.8 Indicators for assessing niacin (nicotinic acid) status at the population level 75
Table 4.9 Proposed criteria for assessing public health severity of niacin deficiency 76
Table 4.10 Indicators for assessing vitamin B₆ (pyridoxine) status at the population level 77
Table 4.11 Indicators for assessing vitamin C status at the population level 79
Table 4.12 Proposed criteria for assessing the public health severity of vitamin C deficiency 80
Table 4.13 Indicators for assessing vitamin D status at the population level 82
Table 4.14 Indicators for assessing calcium status at the population level 85
Table 4.15 Indicators for assessing selenium status at the population level 87
Table 4.16 Indicators for assessing fluoride status at the population level 90
Table 5.1 Key characteristics of iron compounds used for food fortification purposes: solubility, bioavailability and cost 98
Table 5.2 Suggested iron fortificants for specific food vehicles 105
Table 5.3 Commercially available forms of vitamin A, their characteristics and their main applications 112
Table 5.4 Vitamin A fortificants and their suitability for specific food vehicles 113
Table 5.5 Examples of vitamin A fortification programmes 114
Table 5.6 Iodine fortificants: chemical composition and iodine content 118
Table 5.7 Progress towards universal salt iodization in WHO regions, status as of 1999 120
Table 6.1 Vitamin B fortificants: physical characteristics and stability 127
Table 6.2 Calcium fortificants: physical characteristics 132
Table 7.1 FAO/WHO Recommended Nutrient Intakes (RNIs) for selected population subgroups 145
Table 7.2 Estimated Average Requirements (calculated values) based on FAO/WHO Recommended Nutrient Intakes 148
Table 7.3 Tolerable Upper Intake Levels (ULs) 149
Table 7.4 Predicting the effect on intake distributions of adult women of fortifying wheat flour with different levels of vitamin A 154
Table 7.5 Probability of inadequate iron intakes in selected population subgroups at different ranges of usual intake (mg/day) 158
Table 7.6 Prevalence of inadequate iron intakes for menstruating women consuming a diet from which the average bioavailability of iron is 5%: an example calculation 159
Table 7.7 Examples of micronutrients for which the bioavailability of the form used for fortification differs substantially from their bioavailability in the usual diet 162
Table 7.8 Factors that may limit the amount of fortificants that can be added to a single food vehicle 163
Table 7.9 Estimated cost of selected fortificants 165
Table 7.10 Examples of levels of micronutrients currently added to staples and condiments worldwide (mg/kg) 167
Table 7.11 Codex Nutrient Reference Values (NRVs) for selected micronutrients 172
Table 7.12 Energy densities of common food presentations 174
Table 7.13 Calculated maximum micronutrient content for a 40 kcal-sized serving, assuming no other sources of nutrient in the diet 176
Table 7.14 Factors for converting maximum micronutrient amounts for 40 kcal-sized servings to maximum amounts for different food presentations and serving sizes 176
Table 8.1 Purpose and function of the various components of monitoring and evaluation systems for fortification programmes 181
Table 8.2 Suggested criteria for measuring success at various monitoring stages for food fortification programmes 182
Table 8.3	Suggested regulatory monitoring activities for a food fortification programme	183
Table 8.4	Suggested household monitoring activities for a food fortification programme	193
Table 8.5	Evaluating the impact of fortification programmes on nutritional status: a range of approaches	198
Table 8.6	Impact evaluation of a food fortification programme: suggested outcome indicators	201
Table 9.1	Hypothetical annual costs of wheat flour fortification with iron and zinc	212
Table 9.2	Estimated unit costs of selected micronutrient interventions	213
Table 9.3	Country-specific data required for cost-effectiveness and cost–benefit calculations, country P	216
Table 9.4	Key assumptions in estimating cost-effectiveness and cost–benefit of selected micronutrient fortification	217
Table 10.1	Nutrition promotion methods defined	225
Table 11.1	Relationship between legal minimum and maximum levels for iron, with regard to its relative bioavailability from selected forticants	247
Table A.1	Indicators for monitoring progress towards the sustainable elimination of iodine deficiency as a public health problem	285
Table C.1	Conversion factors for calculating Estimated Average Requirements (EARS) from FAO/WHO Recommended Nutrient Intakes (RNIs)	292
Table D.1	Consumption profile of selected industrially-produced staples	301
Table D.2	Recommended composition of dietary supplements to complement fortified foods	302
Table D.3	Safety limits for vitamin A	303
Table D.4	Cost analysis of fortification with vitamin A at the estimated safety limits for sugar, oil and wheat flour	304
Table D.5	Additional intake of vitamin A at various levels of consumption of fortified foods	304
Table D.6	Production parameters for vitamin A fortification	305
Table D.7	Regulatory parameters for vitamin A fortification	305
Table D.8	Safety, technological and cost limits for wheat flour fortification	307
Table D.9	Nutritional implications of wheat flour fortification	308
Table D.10	Production and regulatory parameters for wheat flour fortification	309
Table D.11	Final formulation for the fortification of refined wheat flour and estimated associated costs for a hypothetical country	310
Table D.12	Estimating the overall cost of the proposed fortification programme and the annual investment required	311
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Effect of iron fortification of fish sauce on the iron status of non-pregnant anaemic female Vietnamese factory workers</td>
<td>16</td>
</tr>
<tr>
<td>1.2</td>
<td>Effect of dual-fortified salt (iron and iodine) on iron status of Moroccan schoolchildren</td>
<td>18</td>
</tr>
<tr>
<td>1.3</td>
<td>Effect of flour fortification with folic acid on folate status of Canadian elderly women</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>The interrelationships between the levels of coverage and compliance and the different types of food fortification</td>
<td>27</td>
</tr>
<tr>
<td>7.1</td>
<td>An example of a usual intake distribution in which the median intake is at the RNI or RDA (the formerly-used approach)</td>
<td>144</td>
</tr>
<tr>
<td>7.2</td>
<td>An example of a usual intake distribution in which only 2.5% of the group have intakes below the RNI (RDA)</td>
<td>150</td>
</tr>
<tr>
<td>7.3</td>
<td>An example of a usual intake distribution in which 2.5% of the group have intakes below the EAR (the recommended approach)</td>
<td>150</td>
</tr>
<tr>
<td>8.1</td>
<td>A monitoring and evaluation system for fortification programmes</td>
<td>179</td>
</tr>
<tr>
<td>8.2</td>
<td>Suggested frequency and intensity of sampling for monitoring compliance with standards</td>
<td>187</td>
</tr>
<tr>
<td>9.1</td>
<td>Cost-effectiveness of micronutrient supplementation and fortification</td>
<td>209</td>
</tr>
<tr>
<td>9.2</td>
<td>Cost-effectiveness of selected interventions affecting children</td>
<td>209</td>
</tr>
<tr>
<td>10.1</td>
<td>Relationship between individual decision-making and the perceived costs and benefits of any new behavior, idea or product</td>
<td>226</td>
</tr>
</tbody>
</table>
Foreword

Interest in micronutrient malnutrition has increased greatly over the last few years. One of the main reasons for the increased interest is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. In 2000, the *World Health Report*\(^1\) identified iodine, iron, vitamin A and zinc deficiencies as being among the world’s most serious health risk factors. In addition to the more obvious clinical manifestations, micronutrient malnutrition is responsible for a wide range of non-specific physiological impairments, leading to reduced resistance to infections, metabolic disorders, and delayed or impaired physical and psychomotor development. The public health implications of micronutrient malnutrition are potentially huge, and are especially significant when it comes to designing strategies for the prevention and control of diseases such as HIV/AIDS, malaria and tuberculosis, and diet-related chronic diseases.

Another reason for the increased attention to the problem of micronutrient malnutrition is that, contrary to previous thinking, it is not uniquely the concern of poor countries. While micronutrient deficiencies are certainly more frequent and severe among disadvantaged populations, they do represent a public health problem in some industrialized countries. This is particularly true of iodine deficiency in Europe, where it was generally assumed to have been eradicated, and of iron deficiency, which is currently the most prevalent micronutrient deficiency in the world. In addition, the increased consumption in industrialized countries (and increasingly in those in social and economic transition) of highly-processed energy-dense but micronutrient-poor foods, is likely to adversely affect micronutrient intake and status.

Measures to correct micronutrient deficiencies – at least the major ones – are, however, well known, and moreover relatively cheap and easy to implement. The control of iodine deficiency disorders through salt iodization, for example, has been a major accomplishment in public health nutrition over the last 30 years.

The best way of preventing micronutrient malnutrition is to ensure consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achievable everywhere since it requires universal access to adequate food and appropriate dietary habits. From this standpoint, food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. In fact, fortification has been used for more than 80 years in industrialized countries as a means of restoring micronutrients lost by food processing, in particular, some of the B vitamins, and has been a major contributory factor in the eradication of diseases associated with deficiencies in these vitamins. Because of the increased awareness of the widespread prevalence and harmful effects of micronutrient malnutrition, and in consideration of changes in food systems (notably an increased reliance on centrally processed foods), and successful fortification experiences in other regions, increasing numbers of developing countries are now committed to, or are considering, fortification programmes.

With so much accumulated experience, the conditions under which food fortification can be recommended as a strategic option for controlling micronutrient malnutrition are now better understood. Its limitations are also well known: food fortification alone cannot correct micronutrient deficiencies when large numbers of the targeted population, either because of poverty or locality, have little or no access to the fortified food, when the level of micronutrient deficiency is too severe, or when the concurrent presence of infections increases the metabolic demand for micronutrients. Various safety, technological and cost considerations can also place constraints on food fortification interventions. Thus, proper food fortification programme planning not only requires assessment of its potential impact on the nutritional status of the population but also of its feasibility in a given context.

The success of a fortification programme can be measured through its public health impact and its sustainability. The latter implies an intersectoral approach where, in addition to competent national public health authorities, research, trade, law, education, nongovernmental organizations and the commercial sector are all involved in the planning and implementation of the programme. It has taken time to appreciate the role of the private sector, in particular industry, and the importance of civil society in this process. These are now fully acknowledged and this recognition should strengthen the capability of interventions to combat micronutrient malnutrition.

The main purpose of these Guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. Drawing on several recent high quality publications on the subject and on programme experience, information on food fortification has been critically analysed and then
translating into scientifically sound guidelines for application in the field. More specifically, the Guidelines provide information relating to the benefits, limitations, design, implementation, monitoring, evaluation, cost–benefit and regulation of food fortification, particularly in developing countries. They are intended to be a resource for governments and agencies that are currently implementing, or considering food fortification, and a source of information for scientists, technologists and the food industry. The Guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated within the general context of the need to control micronutrient deficiencies in a population. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including industry.

The document is organized into four complementary sections. Part I introduces the concept of food fortification as a potential strategy for the control of micronutrient malnutrition. Part II summarizes the prevalence, causes and consequences of micronutrient deficiencies, and the public health benefits of micronutrient malnutrition control. It lays the groundwork for public health personnel to assess the magnitude of the problem, and the potential benefits of fortification, in their particular situation. Part III provides technical information on the various chemical forms of micronutrients that can be used to fortify foods, and reviews experience of their use in specific food vehicles. Part IV describes the key steps involved in designing, implementing and sustaining fortification programmes, starting with the determination of the amount of nutrients to be added to foods, followed by the implementation of monitoring and evaluating systems, including quality control/quality assurance procedures, before moving on to the estimation of cost-effectiveness and cost–benefit ratios. The importance of, and strategies for, regulation and international harmonization, communication, advocacy, consumer marketing and public education are also explained in some detail.

The production of the Guidelines has been the result of a long process that started in 2002. Under the aegis of the World Health Organization (WHO), an expert group was established and charged with the task of developing a set of guidelines on food fortification practice. A draft version of the guidelines was reviewed in 2003 by a multidisciplinary panel of experts who collectively represented the range of knowledge and experience required for developing such guidelines. The panel members included experts in public health, nutrition sciences and food technology, from both the public and the private sectors. Afterwards, the draft of the guidelines was circulated among field nutritionists and public health practitioners and also tested in a number of countries. All of the
comments received through this process were considered for this finalized version of the guidelines.

We are all committed to the elimination of micronutrient malnutrition. We hope that these Guidelines will help countries to meet this goal and therefore enable their population to achieve its full social and economic potential.

Lindsay Allen
Bruno de Benoist
Omar Dary
Richard Hurrell
Preface

More than 2 billion people in the world today suffer from micronutrient deficiencies caused largely by a dietary deficiency of vitamins and minerals. The public health importance of these deficiencies lies upon their magnitude and their health consequences, especially in pregnant women and young children, as they affect fetal and child growth, cognitive development and resistance to infection. Although people in all population groups in all regions of the world may be affected, the most widespread and severe problems are usually found amongst resource poor, food insecure and vulnerable households in developing countries. Poverty, lack of access to a variety of foods, lack of knowledge of appropriate dietary practices and high incidence of infectious diseases are key factors. Micronutrient malnutrition is thus a major impediment to socio-economic development contributing to a vicious circle of under-development and to the detriment of already underprivileged groups. It has long-ranging effects on health, learning ability and productivity and has high social and public costs leading to reduced work capacity due to high rates of illness and disability.

Overcoming micronutrient malnutrition is therefore a precondition for ensuring rapid and appropriate national development. This was the consensus reached at the FAO/WHO International Conference on Nutrition (ICN) in December 1992, where 159 countries endorsed the World Declaration on Nutrition, pledging “to make all efforts to eliminate . . . iodine and vitamin A deficiencies” and “to reduce substantially . . . other important micronutrient deficiencies, including iron.” Since then, FAO and WHO have continued to work to achieve this goal and in doing so have adopted four main strategies improving dietary intakes through increased production, preservation and marketing of micronutrient-rich foods combined with nutrition education; food fortification; supplementation; and global public health and other disease control measures. Each of these strategies have a place in eliminating micronutrient malnutrition. For maximum impact, the right balance or mix of these mutually reinforcing strategies need to be put in place to ensure access to consumption and utilization of an adequate variety and quantity of safe, good-quality foods for all people of the world. Underpinning these strategies is the realisation that when there is a dietary deficiency in any one nutrient, there are likely to be other nutrient deficiencies as
well. Consequently in the long-term, measures for the prevention and control of micronutrient deficiencies should be based on diet diversification and consumer education about how to choose foods that provide a balanced diet, including the necessary vitamins and minerals.

These guidelines are meant to assist countries in the design and implementation of appropriate food fortification programmes as part of a comprehensive food-based strategy for combating micronutrient deficiencies. Fortification of food can make an important contribution to the reduction of micronutrient malnutrition when and where existing food supplies and limited access fail to provide adequate levels of certain nutrients in the diet. To ensure that the target population will benefit from a food fortification programme, an appropriate food vehicle must be selected that is widely consumed throughout the year by a large portion of the population at risk of a particular deficiency. In order to reach different segments of the population who may have different dietary habits, selecting more than one food vehicle may be necessary. Fortification of a staple food affects everyone, including the poor, pregnant women, young children and populations that can never be completely covered by social services. In addition, fortification reaches secondary at-risk groups, such as the elderly and those who have an unbalanced diet. Food fortification is usually socially acceptable, requires no change in food habits, does not alter the characteristics of the food, can be introduced quickly, can produce nutritional benefits for the target population quickly, is safe, and can be a cost-effective way of reaching large target populations that are at risk of micronutrient deficiency.

However, there are limitations on the benefits of fortification and difficulties in its implementation and effectiveness. There may, for example, be concerns raised about the possibility of overdose or a reluctance to fortify on human rights grounds where consumer choice may be an issue. There may be reluctance on the part of the food industry to fortify out of fear of insufficient market demand for fortified foods or concern about consumer perceptions that the food product has been altered. Food fortification also raises production costs through such expenses as initial equipment purchases, equipment maintenance, increased production staff needs and quality control and assurance facilities. Economically marginalised households may not have access to such foods and other vulnerable population groups, particularly children under five years of age, may not be able to consume large enough quantities of the fortified food to satisfy an adequate level of their daily requirements. All these issues need to be carefully assessed and these are discussed in detail.

This publication is a useful guide to assist decision makers in ensuring that the nutritionally vulnerable and at-risk populations benefit from food fortification programmes and FAO and WHO would like to express our thanks to all who have been involved in this process. We reaffirm our support to achieve the Millennium Development Goals set by governments for overall nutrition
improvement and will collaborate with international and national agencies so as to accelerate the planning and implementation of comprehensive and sustainable food fortification programmes as one element of national nutrition improvement policies, plans and programmes.

Kraisid Tontisirin,
Director,
Nutrition and Consumer Protection Division,
Food and Agriculture Organization

Denise C. Coitinho,
Director,
Department of Nutrition for Health and Development,
World Health Organization
List of authors

Lindsay Allen
Center Director
USDA, Agricultural Research Service
Western Human Nutrition Research Center
University of California
Davis, California 95616, United States of America

Bruno de Benoist
Coordinator, Micronutrient Unit
Department of Nutrition for Health and Development
World Health Organization
CH 1201, Geneva 27, Switzerland

Omar Dary
Food fortification specialist
A2Z Outreach/The USAID Micronutrient Leadership and Support and Child Blindness Activity
Academy for Educational Development (AED)
Washington D.C. 20009-5721, United States of America

Richard Hurrell
Head, Human Nutrition Laboratory
Food science and Nutrition, Human Nutrition,
ETH (Swiss Federal Institute of Technology)
CH 8092 Zurich, Switzerland

Sue Horton
Professor and Chair Division of Social Sciences
Department of Economics
Munk Center for International Studies
University of Toronto (UTSC)
Toronto, Ontario M5S 3K7, Canada
GUIDELINES ON FOOD FORTIFICATION WITH MICRONUTRIENTS

Janine Lewis
Principal Nutritionist, Nutrition and Labelling programme
Food Standards Australia New Zealand
PO Box 7186
Canberra BC ACT 2610, Australia

Claudia Parvanta
Chair and Professor
Department of Social Sciences
University of the Sciences in Philadelphia
Philadelphia, Pennsylvania, United States of America

Mohammed Rahmani
Département des sciences alimentaires et nutritionnelles
Institut agronomique et vétérinaire Hassan II
BP 6202-Instituts
10101 Rabat, Morocco

Marie Ruel
Division Director
Food Consumption and Nutrition Division
International Food Policy Research Institute
Washington D.C. 20006, United States of America

Brian Thompson
Senior Officer
Nutrition and Consumer Protection Division
Food and Agriculture Organization
Via delle Terme di Caracalla
00100 Rome, Italy
Acknowledgements

Special acknowledgement is given to the following experts for their invaluable contribution to the text and the refinement of the manuscript: Jack Bagriansky, Rune Blomhoff, François Delange, Sean Lynch, Basil Mathioudakis, Suzanne Murphy.

These guidelines were also improved by the experts who participated in the Technical Consultation to review and comment on the manuscript convened by WHO in Geneva in April 2003. Their valuable advice greatly improved the clarity of the text. Those who participated were Maria Andersson, Douglas Balentine, Denise Bienz, André Briend, Rolf Carriere, Ian Darnton-Hill, Jose Chavez, Jose Cordero, Hector Cori, Ines Egli, Dana Faulkner, Olivier Fontaine, Wilma Freire, Cutberto Garza, Rosalind Gibson, Joyce Greene, Graeme Clugston, Michael Hambidge, Pieter Jooste, Venkatesh Mannar, Reynaldo Martorell, Penelope Nestel, Ibrahim Parvanta, Poul Petersen, Peter Ranum, Beatrice Rogers, Richard Smith, Aristide Sagbohan, Bahi Takkouche, Tessa Tan Torres, Robert Tilden, Barbara Underwood, Tina Van Den Briel, Anna Verster, Emorn Wasantwisut and Trudy Wijnhoven. We acknowledge with gratitude Irwin Rosenberg for chairing the meeting in such a way that the ensuing debate added much to the content of the guidelines.

We would like to give a special thanks to Sue Hobbs, Erin McLean, Grace Rob and Afrah Shakori who dedicated so much of their time and patience to make the production of the guidelines possible and to Victoria Menezes Miller for her artistic design of the cover illustration.

We would like also to express our deep appreciation to the Government of Luxembourg for the generous financial support it has provided for the development of these guidelines on food fortification. This contribution has enabled the step-by-step process that was required to establish appropriate normative criteria for guiding WHO and FAO Member States in the implementation of their food fortification programmes. This process included the organization of several expert meetings to develop the guidelines and a technical consultation to review and consolidate the guidelines.

Lastly, we wish to thank the Global Alliance for Improved Nutrition for its support to the publication of the guidelines.
Abbreviations

AI Adequate Intake
CDC Centers for Disease Control
CHD Coronary heart disease
DALY Disability-adjusted life year
DFE Dietary folate equivalents
DRI Dietary Recommended Intake
DRV Dietary Reference Value
EAR Estimated Average Requirement
EDTA Ethylenediaminetetraacetic acid
FAO Food and Agriculture Organization of the United Nations
FFL Feasible Fortification Level
FNB Food and Nutrition Board
GAIN Global Alliance for Improved Nutrition
GDP Gross domestic product
GMP Good manufacturing practice
HACCP Hazard analysis critical control point
ICCIDD International Council for Control of Iodine Deficiency Disorders
IDD Iodine deficiency disorders
IIH Iodine-induced hyperthyroidism
ILO International Labour Organization
INACG International Nutritional Anemia Consultative Group
IOM Institute of Medicine
IRLI International Resource Laboratory for Iodine
IVACG International Vitamin A Consultative Group
IZiNCG International Zinc Nutrition Consultative Group
LMlL Legal Minimum Level
LQAS Lot quality assurance sampling
mFL Minimum Fortification Level
MI Micronutrient Initiative
MMR Maternal mortality rate
MMN Micronutrient malnutrition
MTL Maximum Tolerable Level
MW Molecular weight
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGO</td>
<td>Nongovernmental organization</td>
</tr>
<tr>
<td>NRV</td>
<td>Nutrient Reference Value</td>
</tr>
<tr>
<td>PAHO</td>
<td>Pan American Health Organization</td>
</tr>
<tr>
<td>PAR</td>
<td>Population attributable risk</td>
</tr>
<tr>
<td>PEM</td>
<td>Protein–energy malnutrition</td>
</tr>
<tr>
<td>QA</td>
<td>Quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>RBV</td>
<td>Relative bioavailability</td>
</tr>
<tr>
<td>RDA</td>
<td>Recommended Dietary Allowance</td>
</tr>
<tr>
<td>RE</td>
<td>Retinol equivalents</td>
</tr>
<tr>
<td>RNI</td>
<td>Recommended Nutrient Intake</td>
</tr>
<tr>
<td>RR</td>
<td>Relative risk</td>
</tr>
<tr>
<td>SUSTAIN</td>
<td>Sharing United States Technology to Aid in the Improvement of Nutrition</td>
</tr>
<tr>
<td>TBT</td>
<td>(Agreement on) Technical Barriers to Trade</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
</tr>
<tr>
<td>UL</td>
<td>Tolerable Upper Intake Level</td>
</tr>
<tr>
<td>USI</td>
<td>Universal salt iodization</td>
</tr>
<tr>
<td>VAD</td>
<td>Vitamin A deficiency</td>
</tr>
<tr>
<td>WFP</td>
<td>World Food Programme</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
The **Average Intake (AI)** is a recommended intake value based on observed or experimentally determined approximations or estimates of nutrient intake by a group or groups of apparently healthy people that are assumed to be adequate.

Cost limit refers to the maximum acceptable increment in price of a food due to fortification.

A **Dietary Recommended Intake (DRI)** is a quantitative estimate of a nutrient intake that is used as a reference value for planning and assessing diets for apparently healthy people. Examples include AIs, EARs, RDAs and ULs.

Effectiveness refers to the impact of an intervention in practice. Compared to efficacy, the effectiveness of a fortification programme will be limited by factors such as non- or low consumption of the fortified food.

Efficacy refers to the capacity of an intervention such as fortification to achieve the desired impact under ideal circumstances. This usually refers to experimental, well-supervised intervention trials.

Enrichment is synonymous with fortification and refers to the addition of micronutrients to a food irrespective of whether the nutrients were originally in the food before processing or not.

Essential micronutrient refers to any micronutrient, which is needed for growth and development and the maintenance of healthy life, that is normally consumed as a constituent of food and cannot be synthesized in adequate amounts by the body.

The **Estimated Average Requirement (EAR)** is the average (median) daily nutrient intake level estimated to meet the needs of half the healthy individuals in a particular age and gender group. The EAR is used to derive the Recommended Dietary Allowance.

Evaluation refers to the assessment of the effectiveness and impact of the programme on the targeted population. The aim of an evaluation is to provide evidence that the programme is achieving its nutritional goals.

Feasible Fortification Level (FFL) is that which is determined, subject to cost...
and technological constraints, as the level that will provide the greatest number of at-risk individual with an adequate intake without causing an unacceptable risk of excess intakes in the whole population.

Food commodities are staple foods, condiments and milk.

Fortification is the practice of deliberately increasing the content of an essential micronutrient, i.e. vitamins and minerals (including trace elements) in a food, so as to improve the nutritional quality of the food supply and provide a public health benefit with minimal risk to health.

Legal Minimum level (LmL) is the minimum amount of micronutrient that a fortified food must contain according to national regulations and standards. This value is estimated by adding the intrinsic content of a micronutrient in the food to the selected level of fortification.

Market-driven fortification refers to the situation where the food manufacturer takes the initiative to add one or more micronutrients to processed foods, usually within regulatory limits, in order to increase sales and profitability.

Mass fortification refers to the addition of micronutrients to foods commonly consumed by the general public, such as cereals, condiments and milk.

Maximum Tolerable Level (MTL) is the maximum micronutrient content that a fortified food can present as it is established in food law, in order to minimize the risk of excess intake. It should coincide or be lower than the safety limit.

Minimum Fortification Level (mFL) is the level calculated by reducing the Feasible Fortification Level by three standards deviations (or coefficients of variation) of the fortification process, in order that the average coincides or is lower than the calculated Feasible Fortification Level.

Monitoring refers to the continuous collection and review of information on programme implementation activities for the purposes of identifying problems (such as non-compliance) and taking corrective actions so that the programme fulfils its stated objectives.

Nutritional equivalence is achieved when an essential nutrient is added to a product that is designed to resemble a common food in appearance, texture, flavour and odour in amounts such that the substitute product has a similar nutritive value, in terms of the amount and bioavailability of the added essential nutrient.

Nutrient Reference Values (NRVs) are dietary reference values defined by the Codex Alimentarius Commission with the aim of harmonizing the labelling of processed foods. It is a value applicable to all members of the family aged
Nutrient requirement refers to the lowest continuing intake level of a nutrient that will maintain a defined level of nutriment in an individual for a given criterion of nutritional adequacy.

Processed foods are those in which food raw materials have been treated industrially so as to preserve them. Some may be formulated by mixing several different ingredients.

A premix is a mixture of a micronutrient(s) and another ingredient, often the same food that is to be fortified, that is added to the food vehicle to improve the distribution of the micronutrient mix within the food matrix and to reduce the separation (segregation) between the food and micronutrient particles.

Quality assurance (QA) refers to the implementation of planned and systematic activities necessary to ensure that products or services meet quality standards. The performance of quality assurance can be expressed numerically as the results of quality control exercises.

Quality control (QC) refers to the techniques and assessments used to document compliance of the product with established technical standards, through the use of objective and measurable indicators.

Relative bioavailability is used to rank the absorbability of a nutrient by comparing its absorbability with that of a reference nutrient that is considered as having the most efficient absorbability.

Restoration is the addition of essential nutrients to foods to restore amounts originally present in the natural product, but unavoidably lost during processing (such as milling), storage or handling.

Recommended Dietary Allowances (RDAs) are defined by the United States Food and Nutrition Board and are conceptually the same as the Recommended Nutrient Intake (RNI), but may have a slightly different values for some micronutrients.

The Recommended Nutrient Intake (RNI) is the daily intake that meets the nutrient requirements of almost all apparently healthy individuals in an age-and sex-specific population group. It is set at the Estimated Average Requirement plus 2 standard deviations.

Safety limit is the greatest amount of a micronutrient that can be safely added to specific foods. It considers the UL for the nutrient and the 95th percentile of consumption of a food, and makes allowances for the fact that the...
nutrient is also consumed in unfortified foods, and may be lost during storage and distribution, and/or cooking.

Targeted fortification refers to the fortification of foods designed for specific population subgroups, such as complementary weaning foods for infants.

The **technological limit** is the maximum level of micronutrient addition that does not change the organoleptic or physical properties of the food.

The **Tolerable Upper Intake Level (UL)** is to the highest average daily nutrient intake level unlikely to pose risk of adverse health effects to almost all (97.5%) apparently healthy individuals in an age- and sex-specific population group.

Universal fortification is equivalent to mass fortification.

Universal salt iodization (USI) refers to the addition of iodine to all salt for both human and animal consumption.

Usual intake refers to an individual’s average intake over a relatively long period of time.