Chapter 1 - Dust: Definitions and Concepts ...1
1.1 Dust as an occupational hazard ..1
1.2 Penetration and deposition of particles in the human respiratory tract4
1.3 Clearance of particles from the respiratory tract ..6
 1.3.1 Mucociliary clearance ...6
 1.3.2 Bronchiole movement ..7
 1.3.3 Phagocytosis ...7
1.4 Risk to health ..7
1.5 Particle size fractions: conventions for dust sampling ...8
1.6 Mechanisms of dust generation and release ...8
 1.6.1 Mechanical breakdown ...9
 1.6.2 Dust dispersal ..9
 1.6.3 Dustiness indices ...12
Chapter 2 - Recognizing the Problem: Exposure and Disease ...16
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Dust exposures</td>
<td>16</td>
</tr>
<tr>
<td>2.1.1 Dusty occupations</td>
<td>17</td>
</tr>
<tr>
<td>2.1.2 Dusty processes</td>
<td>17</td>
</tr>
<tr>
<td>2.1.3 Particular hazards</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4 Examples of Exposure</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Problems caused by dusts</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1 Routes of exposure</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2 Potential health effects by inhalation</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3 Pneumoconioses</td>
<td>22</td>
</tr>
<tr>
<td>2.2.4 Cancer</td>
<td>25</td>
</tr>
<tr>
<td>2.2.5 Ischaemic heart disease</td>
<td>25</td>
</tr>
<tr>
<td>2.2.6 Systemic poisoning</td>
<td>25</td>
</tr>
<tr>
<td>2.2.7 Hard metal disease</td>
<td>26</td>
</tr>
<tr>
<td>2.2.8 Irritation and inflammatory lung injuries</td>
<td>26</td>
</tr>
<tr>
<td>2.2.9 Allergic responses</td>
<td>26</td>
</tr>
<tr>
<td>2.2.10 Infection (biological hazards)</td>
<td>27</td>
</tr>
<tr>
<td>2.2.11 Other sources of information concerning health effects</td>
<td>28</td>
</tr>
<tr>
<td>2.3 Examples of prevalence of dust-related diseases</td>
<td>29</td>
</tr>
<tr>
<td>2.4 Safety and other issues</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1 Fire and explosion hazards</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2 Other issues</td>
<td>32</td>
</tr>
<tr>
<td>Chapter 3 - Dust Control and Good Management</td>
<td>37</td>
</tr>
<tr>
<td>3.1 General considerations</td>
<td>37</td>
</tr>
<tr>
<td>3.2 Establishment of hazard prevention and control programmes</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Required resources</td>
<td>40</td>
</tr>
<tr>
<td>3.4 Clear policy and management tools</td>
<td>41</td>
</tr>
</tbody>
</table>
3.5 Continuous improvement...43
3.6 Monitoring of performance..44

3.6.1 General relevance of indicators..44
3.6.2 Scientific relevance of indicators...44
3.6.3 User relevance...45
3.6.4 Health surveillance..45
3.6.5 Environmental surveillance..45

Chapter 4 - Recognizing and Evaluating the Problem - the Systematic Approach..................48

4.1 Methodology for the recognition of hazards ...48
4.2 Control in straightforward cases: the control-banding approach ..51

4.2.1 Hazard bands...52
4.2.2 Finding the control strategy..53

4.3 Quantitative evaluations ..55

4.3.1 Objectives ..55
4.3.2 Occupational exposure limits ...57
4.3.3 Sampling strategy ..58
4.3.4 Size-selective sampling...61
4.3.5 Measuring equipment ...63
4.3.6 Principles of size-selective samplers ...64

4.4 Re-evaluation...66

4.5 Measurement for dust control...66

4.5.1 Looking for dust sources ..66
4.5.2 Direct-reading instruments...67
4.5.3 Stationary sampling...68
4.5.4 Visual techniques...68

4.6 Resources..69
Chapter 5 - Control Approaches and Strategies ... 74
 5.1 Approaches to solutions for occupational hazards ... 74
 5.2 The need for a strategic approach .. 74
 5.3 Classification as an aid to strategy .. 76
 5.4 Options for control ... 77
 5.5 Anticipated preventive action ... 80
 5.6 Special issues ... 82
 5.6.1 Maintenance and repair work .. 82
 5.6.2 Emergencies ... 83
Chapter 6 - Control of Dust Sources ... 85
 6.1 Elimination .. 85
 6.2 Substitution of materials (nature, form) ... 85
 6.3 Problems of substitution ... 87
 6.4 Substitutes for silica sand in abrasive blasting ... 88
 6.5 Physical form ... 89
 6.6 Process and equipment modification ... 90
 6.7 Wet methods .. 91
 6.8 Maintenance of Equipment .. 94
Chapter 7 - Control of Dust Transmission .. 97
 7.1 Containment (or isolation) and enclosures ... 97
 7.2 Ventilation principles ... 98
 7.3 General ventilation ... 99
 7.4 Local Exhaust Ventilation ... 102
 7.4.1 System design ... 103
 7.4.2 Capturing the dust ... 104
 7.4.3 Exhaust hoods .. 108
Hazard Prevention and Control in the Work Environment: Airborne Dust

9.4 Warning signs and restricted areas ...157
Chapter 10 - Environmental Protection ...159
 10.1 General issues ..159
 10.2 Strategies ..160
 10.3 Further information ..161
Chapter 11 - Sources of Information ...163
 11.1 International agencies ..163
 11.1.1 World Health Organization ...163
 11.1.2 International Labour Organization (ILO) ...164
 11.1.3 United Nations Environment Programme (UNEP)167
 11.1.4 International Programme on Chemical Safety (IPCS)168
 11.2 National institutions ...169
 11.2.1 National Institute for Occupational Safety and Health (NIOSH), USA169
 11.2.2 Health and Safety Executive (HSE), UK ..170
 11.2.3 Institut National de Recherche et de Sécurité (INRS), France171
 11.2.4 National Institute for Working Life, Sweden ..171
 11.2.5 Canadian Centre for Occupational Health & Safety (CCOHS), Canada ...172
 11.3 Professional organisations ...172
 11.4 Books, Reports and CD-ROMs ..173
 11.5 Periodicals ..175
 11.5.1 Abstracts ..175
 11.5.2 Journals ...176
 11.6 Other Internet resources ...177
ANNEX I. List of Participants in the WHO Consultation on180
ANNEX II. Knowledge Gaps and Recommendations for Future Research190
 II.1 Background ..190
Reference for Annex IV ...219
EXECUTIVE SUMMARY

PURPOSE

Airborne contaminants can occur in the gaseous form (gases and vapours) or as aerosols, which include airborne dusts, sprays, mists, smokes and fumes. Airborne dusts are of particular concern because they are associated with classical widespread occupational lung diseases such as the pneumoconioses, as well as with systemic intoxications such as lead poisoning, especially at higher levels of exposure. There is also increasing interest in other dust-related diseases, such as cancer, asthma, allergic alveolitis and irritation, as well as a whole range of non-respiratory illnesses, which may occur at much lower exposure levels. This document has, therefore, been produced to aid dust control and the reduction of disease.

Whenever people inhale airborne dust at work, they are at risk of occupational disease. Year after year, both in developed and in developing countries, overexposure to dusts causes disease, temporary and permanent disabilities and deaths. Dusts in the workplace may also contaminate or reduce the quality of products, be the cause of fire and explosion, and damage the environment.

As a matter of social justice, human suffering related to work is unacceptable. Moreover, appreciable financial losses result from the burden of occupational and work related diseases on national health and social security systems, as well as from their negative influence on production and quality of products. All these adverse consequences, which are economically costly to employers and to society, are preventable through measures which have been known for a long time, and which are often of low cost.

The aim of this document is to help educate and train people in the prevention and control of dust in the workplace. It also aims at motivating employers and workers to collaborate with each other, in tandem with occupational health professionals, for the prevention of the adverse effects caused by dust in the workplace. Of course, dust is only one among the many workplace hazards, which include other aerosols (such as fumes and mists), gases and vapours, physical and biological agents, as well as ergonomic factors and psychosocial stresses.
RECOGNIZING THE PROBLEM

Definitions and examples

Dusts are solid particles ranging in size from below 1 µm up to around 100 µm, which may be or become airborne, depending on their origin, physical characteristics and ambient conditions. This document does not deal specifically with other aerosols (such as fumes and mists), with very fine particles resulting from chemical reactions in the air, or with air pollution outside the workplace. However, in many cases similar principles of control apply to these as to dusts.

Examples of hazardous dusts in the workplace include:

- mineral dusts from the extraction and processing of minerals (these often contain silica, which is particularly dangerous);
- metallic dusts, such as lead and cadmium and their compounds;
- other chemical dusts, such as bulk chemicals and pesticides;
- vegetable dusts, such as wood, flour, cotton and tea, and pollens;
- moulds and spores.

Asbestos is a mineral fibre, which is particularly dangerous, and is found, for example, in maintenance and demolition of buildings where it had been used as insulation material.

Size fractions

In occupational hygiene, particle size is usually described in terms of the aerodynamic diameter, which is a measure of the particle’s aerodynamic properties. Whether or not an airborne particle is inhaled depends on its aerodynamic diameter, the velocity of the surrounding air, and the persons’ breathing rate. How particles then proceed through the respiratory tract to the different regions of the lungs, and where they are likely to deposit, depend on the particle aerodynamic diameter, the airway dimensions and the breathing pattern. If a particle is soluble, it may dissolve wherever it deposits, and its components may then reach the blood stream and other organs and cause disease. This is the case, for example, of certain systemic poisons such as lead. There are particles which do not dissolve, but cause local reactions leading to disease; in this instance, the site of deposition makes a difference. When a relatively large particle (say 30 µm) is inhaled, it is usually deposited in the nose or upper airways. Finer particles may reach the gas-exchange region in the depths of the lungs, where removal mechanisms are less efficient. Certain substances, if deposited in this region, can cause serious disease, for example, free
crystalline silica dust can cause silicosis. The smaller the aerodynamic diameter, the greater the probability that a particle will penetrate deep into the respiratory tract. Particles with an aerodynamic diameter > 10 µm are very unlikely to reach the gas-exchange region of the lung, but below that size, the proportion reaching the gas exchange region increases down to about 2 µm.

The depth of penetration of a fibre into the lung depends mainly on its diameter, not its length. As a consequence, fibres as long as 100 µm, have been found in the pulmonary spaces of the respiratory system.

Whenever exposure to airborne dust needs to be quantitatively evaluated, instruments must be used which select the right size range for the hazard concerned. There are conventions for the size ranges of particles to be measured; it is usual to collect either the inhalable fraction, i.e. everything that is likely to be inhaled, or the respirable fraction, i.e. the particles likely to reach the gas-exchange region of the lung. For example, if silica is present, it is necessary to measure the respirable fraction of the airborne dust.

Dust generation

Mineral dusts are generated from parent rocks by any breaking down process, and vegetable dusts are produced by any dry treatment. The amount, hence the airborne concentration, is likely to depend on the energy put into the process. Air movement around, into or out of granular or powdered material will disperse dust. Therefore handling methods for bulk materials, such as filling and emptying bags or transferring materials from one place to another, may constitute appreciable dust sources. Coarse materials usually have a dust-sized component as a result of attrition. If dust clouds are seen in the air, it is almost certain that dust of potentially hazardous sizes is present. However, even if no dust cloud is visible, there may still be dangerous concentrations of dust present with a particle size invisible to the naked eye under normal lighting conditions.

Unless its generation is prevented or it is removed from the air, dust may move with ambient air and reach even persons who are remote from the source and whose exposure is unsuspected.

Damp materials are less likely to release airborne dust, but of course this does not apply if they dry up later.

Sources of exposure

Work processes likely to generate dust include the following:

- mining, quarrying, tunnelling, stone masonry, construction, and any process which breaks or
separates solid material;

- foundries and other metallurgical processes, especially the cleaning of casting and breaking of moulds;
- any process using abrasive blasting, such removal of paint and rust, cleaning of buildings and small objects, and etching of glass (N.B., use of sand for these processes is often unnecessary, and if uncontrolled can cause serious health impairment, and even fatalities, among the operators, even in a few months);
- manufacture of glass and ceramics;
- handling of powdered chemicals in the chemical, pesticide, rubber manufacturing and pharmaceutical industries;
- agricultural work involving exposure to soil, intensive animal husbandry, dry vegetable products, or agro-chemicals;
- food processing, especially where flour is used;
- any process involving weighing, bagging, bag-emptying or dry transport of powdered or friable materials.

Fire and Explosion

This document is concerned with preventing disease. Nevertheless, safety hazards (which pose immediate danger of accident) cannot be overlooked. Any airborne flammable dust in sufficient concentrations can explode. Combustible dust on the ground may become airborne and increase and propagate an explosion which is started by flammable gas ignition. This can occur with vegetable and organic materials, as well as with metal and other oxidizable dusts. Static electricity can also pose hazards. Preventive measures include good housekeeping to prevent build-up of dust deposits, prevention of ignition, provision of explosion relief valves, dusting with non-flammable dusts, and confinement in low-oxygen environments.

RECOGNIZING AND EVALUATING THE PROBLEM

If any dusty process is being carried out, an assessment should be made to establish if people are at risk from dust exposure. This requires looking systematically at the workplace to see whether there is a problem and in general terms what could be done to prevent risk. The assessment should determine which hazardous materials are in use, in what amounts, and how much dust of which fraction may become airborne and lead to exposure, among other factors. An initial “walk-through” survey of the workplace should be conducted. The controls in use
should be examined to determine their effectiveness, and the eventual need for other or additional controls should be considered. Maintenance and cleaning procedures should be examined, to ensure that they are effective and do not give rise to excessive exposure. The position of workers and the organization of their tasks should be appraised in view of the location and nature of the dust sources. The level of training and information of the workforce should also be assessed. It should be ensured that management favours work practices which reduce or eliminate risks. The advice from competent professionals, preferably occupational hygienists, should be sought; this is indispensable whenever dealing with complicated situations, or with hazardous substances.

The walk-through survey will not usually include detailed measurement, although direct-reading instruments may be used to gain a rough picture of the risks present. Obvious and avoidable risks can be dealt with immediately, and schemes exist for using basic substance and use information to decide what controls are appropriate.

Quantitative evaluations of airborne dust may be performed for a number of reasons, for example: to assess workers’ exposure in relation to an adopted standard, to determine the need for control measures or to assess the effectiveness of control strategies.

The results of quantitative evaluations are usually compared with occupational exposure limits either of the country concerned, or of an international agency, or of some other authority. The evaluation strategy and methods should be those laid down by this authority. The determination of the dust air concentrations to which workers are exposed involves air sampling and further analysis of the collected dust sample, chemically, gravimetrically or microscopically.

Sampling for exposure assessment is usually carried out by means of a personal sampler, attached to the worker, and which consists of a pump (air mover) and a sampling head located in the worker’s breathing zone. The sampling head consists of a filter holder, with a filter where the dust sample is collected, preceded by a pre-collector to separate the fraction of interest. Sampling heads should be designed to collect either the inhalable or respirable fraction of the airborne dust. The worker’s average exposure during a shift or part of a shift, as laid down in the exposure limits, can then be estimated.

Other measurements may be helpful to understand where dust is coming from, or at what moment(s) of the work cycle it is being emitted. These measurements may rely on fast-response direct-reading instruments, but simpler qualitative means such as forward light scattering (dust lamp) techniques to illuminate the dust, or smoke tubes to trace air movement, may be all that is needed. Often, but not always, the workers involved may be able to say where and when dust is emitted. There are systems that combine video imaging with dust concentration measurements, thus allowing the visualization of how exposure changes as workers perform their tasks. This is
useful to evaluate the effectiveness of control systems and also to compare different controls (e.g. exhaust ventilation or wet methods).

If the situation is unsatisfactory, control strategies should be designed and implemented, as will be discussed in later chapters. Afterwards, the situation should be re-assessed, and a programme of periodic re-assessment should be planned and carried out.

CONTROL APPROACHES AND STRATEGIES

The prevention of occupational hazards is much more effective and usually cheaper if it is considered at the planning stage of any work process and workplace, rather than as control solutions of already existing hazardous situations. This applies first to the planning of new processes or factories, to ensure that hazardous substances are only used if necessary. If they are necessary, then emissions inside and outside the workplace, as well as waste generation, should be minimized, considering the whole life of the process and the products. The workplace and the job should be planned so that hazardous exposure is either avoided or kept to an acceptable minimum. Incentives should reward work practices which minimize exposure. The same considerations should apply to the introduction of new or modified processes and procedures. The order of priority should be to:

(1) “Plan out” the exposure, by not using hazardous substances, or using them in such a way that no one is exposed;

(2) If (1) does not completely prevent exposure, then prevent or minimize emission of the substances to the air;

(3) If it is not possible to prevent exposure by any other method, then give personal protective equipment, including respiratory protective equipment (RPE), to the workers and other persons, as needed.

It is essential to adequately plan for supervision and maintenance, in order to ensure that controls are used and continue to be effective. Workplace control of exposure must be integrated with other measures, such as control of emissions to the atmosphere and waterways, and waste disposal, so that all these measures work together. (Of course, elimination of the hazardous substances prevents all these problems.) Similarly, the control of any hazardous substance in the workplace should be part of an integrated control system encompassing other hazards, such as noise and heat, as well as the ergonomic design of tasks and workplaces.

Control of exposure to dusts, alongside other health and safety measures and environmental protection, should be a key priority of the top level management, and workers should continually be made aware that this is a management priority. Incentive systems for supervisors and workers
should be designed to encourage safe procedures and not just productivity.

Prevention and control measures should not be applied in an ad hoc manner, but integrated into comprehensive, well-managed and sustainable programmes at the workplace level, involving management, workers, production and occupational health professionals.

ELIMINATION AT THE SOURCE

Elimination at the source can involve three different items: the production process, the hazardous substance and the work practices. A production process can be changed by applying a production method which generates less dust. This is a sensible approach at the design stage of a production process or when production lines are changed due to the introduction of new product lines.

A hazardous substance may be eliminated by changing the process so that the substance is no longer needed, or by using a less hazardous substance as a substitute. It is, of course, necessary to assess all of the effects of the change, taking into account other hazards such as noise, and any effects on the performance of the product, particularly effects on its safety. If substances are changed, it will be necessary to assess and control any eventual new risks.

If substitution is not feasible, ways should be sought of reducing dust generation. For example, substances might be used as pellets or in liquid suspension, rather than as powders, or, brought in as pre-formed blocks, rather than being cut in the workplace. Any wet method is likely to cause less dust exposure than a dry one. In breaking and drilling, it is much more effective to keep the substance wet at the point of dust generation than to try to capture already airborne dust by spraying it. Moreover, it is necessary to prevent subsequent drying out of dusty material, eventual slipping hazards due to wet surfaces, electrical hazards, and heat stress from the increased humidity. It is also necessary to plan for the adequate disposal of any contaminated liquid effluent.

CONTAINMENT AND VENTILATION

Containment consists in placing a physical barrier between the substance and people, for example putting a process inside a box. It is usually necessary to have a ventilation system that keeps the enclosure under negative pressure, so that there is no emission at cracks or at points where material moves in or out of the enclosure. The design should be such that maintenance and cleaning can be performed without causing high exposure; unplanned breakdowns, which may tempt workers to open the enclosure, should be foreseen.

It may be satisfactory to partially enclose a process, for example, by having an opening at the front of an enclosure for the operator to reach in (however, the worker’s breathing zone should
never be between the contaminant source and the hood). Effective design is difficult, because the flow of air into the opening must be sufficient to prevent escape of the airborne material, including when people move across the opening.

Local exhaust ventilation is the removal of airborne contaminants, close to their source of generation or release, before they can spread and reach the worker’s breathing zone. For this, it is necessary to ensure that the airflow is sufficient and its direction appropriate, particularly where the process generates air movement, such as a grinding wheel, or a hot process. For the same exhaust volume, the velocity of air being drawn towards the hood opening rapidly decreases with the distance (from the opening); considering that a minimum air velocity is required to ensure the capture of an airborne contaminant, it follows that the hood must be as close as possible to the point of dust generation.

General ventilation is usually desirable to control the temperature and humidity of the environment, and a properly designed system can act as a back-up control of exposure to airborne substances, by providing continual dilution of any accidental emissions. In certain cases, general ventilation can be used to control widely disseminated low toxicity contaminants.

Ventilation must be so designed that movements of personnel and vehicles, or the opening of doors and windows, cannot jeopardize its effectiveness. The design of ventilation systems should always be the responsibility of specially trained professionals. The task is particularly difficult where one fan exhausts from a set of ducts and hoods (multi-hood systems). It is easy to accidentally arrange a system so that very little air is exhausted from one or more of the openings, or to badly design a ductwork system so that it has an unnecessarily high resistance to flow. The design of the ductwork must take into account the need for cleaning (which may involve exposure of the cleaning staff) and the abrasive effect of dust.

It is essential that managers ensure a continued and effective inspection and maintenance programme, so that ventilation systems continue to work as designed, and that workers are properly informed and trained about their use.

It is necessary to ensure that ventilation does not move contaminated air to unsuspecting workers downstream, and that hazardous substances are not exhausted to the general environment in an unplanned and undesirable way. When dealing with toxic contaminants, air cleaning devices must be incorporated in ventilation systems, in order to prevent their discharge to the outside environment, and also to prevent re-circulation to the workplace. The disposal of collected toxic dusts must be controlled so as to minimize exposure of the responsible workers and avoid environmental effects.
WORK PRACTICES

The manner in which a worker performs a task can appreciably affect exposure, so it is important to train workers in good work practices. Video recording of tasks, with simultaneous measurement of airborne concentrations, can be a useful tool for designing and training in adequate work practices. In the case of dusts, it may be effective (and cheaper) to use a dust lamp to make the dust visible, and to use this in conjunction with video filming. Work practices which affect exposure include:

- the manner in which containers are handled and lids removed;
- the care taken in transferring dusty materials;
- work speed; and
- the way in which empty containers are handled.

If the material is likely to offer an ingestion hazard, smoking, eating and drinking in the workplace should be forbidden; such activities should be restricted to designated areas, with adequate washing facilities. Personal care, including teeth brushing, washing hands and cleaning nails, showering and washing hair, before eating and after the work are important measures whenever there is the possibility of dust contamination. Workers must be properly trained about the hazards and risks from the substances used, the control measures, and any exposure monitoring. The workers are often the people who have the fullest knowledge of what happens during work, and their views should be sought on what leads to exposure and the effectiveness of control.

PERSONAL MEASURES

Every attempt should be made to avoid or minimize exposure by other methods before resorting to personal protective equipment (PPE), especially respiratory protective equipment (RPE). A respirator, particularly of the mask type, is not easy to wear for long periods; it can be very uncomfortable, especially in hot or cramped conditions, and workers may be tempted to remove it. Moreover, uncontrolled airborne dust may spread and affect people who are distant from the task, so it is better to prevent the occurrence of dust exposure in the first place. Another problem is that PPE is fallible, and may not give the protection assumed; moreover, it offers no environmental protection. Finally, PPE and especially RPE must be conscientiously cleaned and maintained to remain effective, which often makes them a costly option; poor maintenance makes any PPE ineffective.

Nevertheless, there may be some operations, such as cleaning and maintenance, where RPE is the only practical control method. It is very important that such equipment be selected by trained
personnel, taking into account the type of hazardous materials it should protect from, the nature of the work, the expected exposure, and the facial characteristics of the wearers; proper fit is of paramount importance. Workers, supervisors and maintenance staff must be properly trained in the use, maintenance and limitations of the equipment.

The tasks for which PPE is prescribed should be periodically re-assessed to see if other control measures have become applicable. Gloves and other skin protection are necessary if the dust may pose a hazard through skin absorption or ingestion, or can have a direct effect on the skin.

Substances should only be purchased from suppliers who adequately label containers and who supply adequate material safety data sheets. A management system should ensure that the necessary information is passed on to all who may be potentially exposed. Areas where there is a need for the use of PPE or other precautions should be clearly indicated by warning signs.

Work clothing should not allow the collection of dust; problems such as gathering dust in pockets and shoes should be foreseen. Laundering of clothing contaminated with toxic materials should be done safely, under controlled conditions, never in the homes of workers.

ENVIRONMENTAL PROTECTION

Prevention and control systems should be designed to protect both workers’ health and the general environment. Environmental consequences include the effect of fine particles on atmospheric visibility, damage to buildings, effects on vegetation and animals, and health effects on people outside the plant. As in the workplace, the first priority is to prevent the generation of airborne dust, and, if generation cannot be prevented, then secondly, its removal. Measures that minimize waste generation should be given priority, and any inevitable waste disposal should be so planned as to avoid environmental damage.
HAZARD PREVENTION AND CONTROL IN THE WORK ENVIRONMENT:

AIRBORNE DUST

PREFACE

Occupational diseases and health impairments occur every day throughout the world, due to lack or inadequacy of prevention and control measures in the workplace.

Work is indispensable for the individual, for society, and for the development of nations. Unfortunately, work processes and operations are often associated with exposure to harmful agents and stressors - such as chemicals, mineral and vegetable dusts, noise, heat, radiation, micro-organisms, ergonomic and psychosocial factors - which, if uncontrolled, will eventually lead to adverse effects on workers’ health and well-being. A number of agents may go beyond the workplace and cause environmental damage.

The profession that aims at anticipating, recognizing, evaluating and controlling such workplace agents and factors is occupational hygiene. Agents that occur as airborne contaminants include gases, vapours, fumes, mists and dusts, and these can occur in any combination.

Occupational hygienists must look at the work environment and the workers as a whole; all agents and factors that may lead to any harmful exposure must be assessed, with a view to preventing or controlling them. However, this document focuses on only one agent - airborne dust; it does not cover other aerosols and, even in the category of dusts, it does not cover radioactive materials, as these require very specialized preventive approaches. This document is intended as a contribution to the dissemination of only one aspect of the comprehensive knowledge and experience required to ensure a healthy workplace and a healthy workforce.

As a matter of social justice, significant human suffering related to work is unacceptable. Ramazzini said, about 300 years ago: “It is but a sad profit which is achieved at the cost of the health of workers...” Another aspect is that harmful workplace agents and factors often result in appreciable financial loss due to the burden on health and social security systems, to the negative impact on production and to the associated environmental costs. People should not have to endure, and countries cannot afford, such damaging effects (Goelzer, 1996).

2 Prepared by B. Goelzer
Many studies have demonstrated that occupational diseases constitute serious health and economic problems to nations. It should be kept in mind that most cases of occupational diseases are never diagnosed and/or reported as such. In Latin America, for example, it has been estimated that only about 1-4% of occupational diseases are duly reported (PAHO, 1998). Very often, signs and symptoms obviously related to occupational exposure, such as advanced silicosis, are observed among workers who have never made work-related complaints.

One example of under-reporting was given in a study in a Brazilian hospital, involving 3,440 tuberculosis patients among whom 119 had silico-tuberculosis. These 119 patients, who had been previously diagnosed as having only tuberculosis, had worked in rock grinding and drilling (granite quarries), sandblasting, foundries and in ceramics and glass industries (Mendes, 1978).

If the vast available knowledge on hazard prevention and control were correctly applied in good time, exposure to hazardous agents and hence the associated harmful effects could be avoided or greatly reduced. Alice Hamilton, pioneer occupational physician and hygienist, said: “...obviously, the way to attack silicosis is to prevent the formation and escape of dust...”

A classic example is the case of the Vermont granite-cutting industry: around the beginning of this century, pneumatic tools were introduced which generated much larger amounts of airborne dust (containing free crystalline silica) than previously generated by hand cutting tools. This was followed by a dramatic rise in the death rate of what was first considered to be tuberculosis and later found to be silicosis. In the late 1930s, local exhaust ventilation was introduced and silicosis gradually disappeared until it was virtually eradicated in these Vermont quarries by 1967 (Burgess et al., 1989). Another example is Australian coal mining, in which there has not been a new case of coal miners' pneumoconiosis in this major industry in the last 10 years, due to strict enforcement of occupational exposure limits. Studies in different countries have shown declines in the prevalence of occupational respiratory disease as the result of the introduction of dust control measures (Lee, 1997; Uragoda, 1997).

Unfortunately, the available knowledge on hazard prevention and control is not yet adequately and universally applied; for example, although silicosis has been known for centuries, exposure to dusts containing free crystalline silica remains uncontrolled in countless workplaces throughout the world, mostly but not exclusively in developing countries, still leading to “text book” cases of this preventable disease.

It often happens that more resources are placed into dealing with the consequences of harmful occupational exposure than into actually preventing them.

Even in countries where occupational hygiene is well developed, fully understood and widely practiced, there is still need to further promote hazard prevention and control. This is well illustrated by a study in the USA, which estimated the long-term cost of coal miners
pneumoconiosis ("black lung"), in terms of benefit compensation costs, for 1991-2010; and for the same period, research expenditures on dust control by the responsible U.S. agency are expected to be only of the order of 0.44% of such projected compensation costs (Page et al., 1997). From this, one can imagine what the imbalance must be in other parts of the world!

There is a worldwide need to effectively apply existing knowledge into appropriate preventive strategies in the workplace. As very well said in a Zen proverb: “Knowing and not applying is the same as not knowing”.

In order to contribute to wider and more effective application of technical and scientific knowledge in hazard prevention and control, the occupational health programme of the World Health Organization launched the “Prevention And Control Exchange” (PACE) Initiative (Swuste et al., 1994), with the following long term objectives:

• to promote awareness and political will concerning the need for prevention and control as a priority element of occupational health programmes, and

• to strengthen or develop, at the national level, technical and managerial capabilities for the utilization of successful approaches to the prevention and control of health hazards in the workplace, integrated into efficient and sustainable programmes, emphasizing anticipated preventive action, source control, safe work practices, workers’ participation and environmental protection.

The activities envisaged for the achievement of these objectives rely basically on awareness-raising, exchanges of information, development of human resources and promotion of applied research on pragmatic control solutions, which can also be applied in small-scale enterprises. The outputs from such activities, disseminated worldwide, will hopefully contribute to the protection of workers’ health and of the environment, as well as to a sustainable development. The first step was to prepare and widely distribute a PACE document for decision-makers at different levels (WHO, 1995a).

It should be mentioned that the World Health Organization, together with its network of Collaborating Centres for Occupational Health, has developed a “Global Strategy on Occupational Health for All” (WHO, 1995b), in order to identify the main needs and establish priorities for action, both at the country and global levels, as well as to trigger the necessary awareness and political commitment to develop appropriate occupational health services, through intersectoral coordination and international collaboration. The recommended key principles for international and national occupational health policies include, among others: avoidance of hazards (primary prevention); safe technology; optimization of working conditions; and integration of production with health and safety activities.
Yet another international initiative should be mentioned, the “ILO/WHO International Programme on the Global Elimination of Silicosis”, launched in 1995, in response to a need clearly demonstrated by the worldwide prevalence of this serious occupational disease. This programme includes the formulation of national, regional and global action plans, mobilization of resources and strengthening of the required capabilities for the establishment of efficient national programmes, involving the application of primary and secondary prevention, as well as epidemiological surveillance, monitoring and evaluation of results. This programme will greatly rely on cooperation among governments, institutions and different organizations (trade, employers, non-governmental, professional), both in industrialized and developing countries, and international agencies.

In view of the worldwide magnitude of occupational exposure to dust and the acute need for increased preventive action in this respect, an activity on “Hazard Prevention and Control in the Work Environment - Airborne Dust” was started, as a component of the PACE initiative. This activity, which is also highly relevant to both the “Global Strategy on Occupational Health for All” and the “ILO/WHO International Programme on the Global Elimination of Silicosis”, has the following long term objective: “to promote and strengthen national capabilities in the field of prevention and control of dust exposure in the work environment, by contributing to the development of the required human resources”.

Initial steps involve the preparation of educational materials, namely this document, and videos illustrating and comparing preventive principles by means of “visualization” techniques, such as the “Picture Mix Exposure - PIMEX” (Rosén, 1993) and light scattering.

The target audience for these educational materials is primarily occupational hygienists in training; however, the aim is also to contribute to continuing education activities, including for other occupational health and safety professionals involved with dust problems, as well as for occupational health and safety managers, ventilation engineers, production engineers and process designers.

The objective of this document is to provide general advice and to illustrate important aspects to be considered, if acceptable levels of dust control are to be achieved. For a successful control approach there needs to be:

3 Responsible officer for this document in WHO: Berenice I. F. Goelzer, Occupational Hygienist, Occupational and Environmental Health (OEH), Department of Protection of the Human Environment (PHE), World Health Organization, 1211 Geneva 27, Switzerland

xxii
Commitment from management and workers to the goal of dust control and elimination of occupational disease and other adverse effects of dust exposure;

Recognition and acceptance of dust problems;

Capability to estimate the magnitude of the problem;

Understanding of control principles and options;

Design and implementation of effective prevention and control measures; and

Establishment of sustainable preventive programmes, including mechanisms for continued evaluation and improvement.

The different chapters of this document present: dust definitions and mechanisms of generation; illustrations of occupational exposure to dusts and resulting problems, particularly health effects; principles for the recognition and evaluation of dust problems in the workplace; preventive principles and strategies; specific measures to control dust at the source, such as substitution, and to control dust transmission from the source to the workers, including engineering measures (e.g., exhaust ventilation) and personal measures (e.g., work practices and personal protection). The importance of integrating specific measures into sustainable hazard prevention and control programmes is emphasized, including how management procedures impact on dust control. The relation to environmental protection is discussed, and, guidance is provided as to where further information can be found.

This document was discussed by a group of specialists, during a WHO Consultation (see Annex I), who also identified gaps in knowledge and made recommendations for further research (Annex II). Annex III presents an analysis of the production process with a view to controlling it. Annex IV presents case studies, including a proposed format; it would be greatly appreciated if new case studies on this subject were sent to WHO, for worldwide dissemination.
ACKNOWLEDGEMENTS

The first draft of this document was prepared by B. Goelzer, with the assistance of A. D. Phillips and P. Swuste. It was later discussed with a number of specialists in the field who contributed with comments. Contributions from the participants of the WHO Consultation (Annex I) are particularly acknowledged. Technical editing was done by T. L. Ogden. Final editing was done by Dr. D. I. Nelson with the assistance of Dr. R. Y. Nelson.

The WHO Consultation was financed under a Cooperative Agreement with the National Institute of Occupational Safety and Health (NIOSH, USA).

References for the Preface

