Principles of Patient Safety Research: An Overview

- David W. Bates, MD, MSc
- External Program Lead for Research, WHO
- Professor of Medicine, Harvard Medical School
- Professor of Health Policy and Management, Harvard School of Public Health

Aim

To focus on the “research” aspect in Patient Safety. Five important domains will be discussed in detail:

1) Measuring harm
2) Understanding causes
3) Identifying solutions
4) Evaluating impact
5) Translating evidence into safer healthcare
Overview

1) Why Research Is Needed
2) Theory
3) Examples
4) Interactive
5) Conclusions
Questions for Lecture 2, Principles of Patient Safety Research

(1) Descriptive research is always better than inferential research.
 a. True
 b. False

(2) When is doing qualitative research especially helpful?
 a. When you want to understand the reasons behind a safety issue
 b. When you do not have enough resources to do a large, prospective, quantitative study
 c. both a and b
 d. neither a nor b

(3) When does it make most sense to do an observational research study?
 a. When the human subjects committee requires it
 b. When the magnitude of a problem isn’t known
 c. When you want to find out whether or not a solution worked
 d. When you have tested a solution and found that it didn’t work well

(4) What is the strongest research design type?
 a. Cross-sectional
 b. Survey
 c. Retrospective
 d. Prospective

Descriptive Research vs. Inferential Research

- Descriptive studies focus on describing phenomena in a specific sample of people, or describing differences between two or more specific samples
 - May find many differences—but what is interpretation?
- Inferential studies study specific samples of people in order to understand how phenomena operate in large groups of individuals
 - Generally more informative in patient safety
Qualitative vs. Quantitative Research

<table>
<thead>
<tr>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim a complete, detailed description</td>
<td>Aim to count features, build statistical models</td>
</tr>
<tr>
<td>May know only roughly what looking for</td>
<td>Researcher knows what they are looking for</td>
</tr>
<tr>
<td>Best in early phases</td>
<td>Best in later phases</td>
</tr>
<tr>
<td>Data in words, pictures, objects</td>
<td>Data in numbers</td>
</tr>
<tr>
<td>Rich, time-consuming, less generalizable</td>
<td>More efficient, can test hypotheses, may miss detail</td>
</tr>
</tbody>
</table>

When to Use Qualitative vs. Quantitative

- Qualitative early on, when don’t know what are looking for
- Quantitative when want numeric descriptions
- Qualitative can be less expensive—can often get a good sense of safety issues in an organization with this
 - But data are likely to be less persuasive to leadership
- Two approaches are often complementary, especially in evaluation of interventions
 - Quantitative—whether the intervention worked
 - Qualitative—why or why not
Observational Research vs. Interventional

- Observational—typically want to do first, to understand safety problem, specific frequency of problems, potential approaches for addressing them
 - Can get a sense of what “ceiling” is for benefit of intervention
 - Example: doing a study at one hospital to identify adverse events, and to decide what group of adverse events to work on first
- Interventional—to test a solution. Usually have intervention and control groups.
 - Various designs—before-after, on-off, contemporaneous controls
 - Example: studying the surgical checklist in half the surgical services in an organization

Design

- Cross-sectional—single cut at one time through a population
 - Counting the number of adverse events in a hospital on one day
- Retrospective—taking a population, and looking back through a specific period
 - Example: reviewing all deaths for a year
- Prospective—looking forward for a specific period
 - Counting all hospital-acquired infections looking forward with active surveillance over a year
Examples: Measuring Harm—Baker et al

- **Objective**
 - To estimate the incidence of adverse events (AEs) among patients in Canadian acute care hospitals.

- **Methods**
 - Randomly selected 1 teaching, 1 large community and 2 small community hospitals in each of 5 provinces and reviewed a random sample of charts for adult patients in each hospital for the fiscal year 2000.
 - Trained reviewers screened all eligible charts, and physicians reviewed the positively screened charts to identify AEs and determine preventability.

- **Results**
 - AE rate calculated to be 7.5 per 100 hospital admissions.
 - Among patients with AEs, preventable events occurred in 36.9% and death in 20.8%. Estimated that 1521 additional hospital days associated with AEs.

- **Conclusion:**
 - Overall incidence rate of AEs of 7.5% suggests that, of the almost 2.5 million annual hospital admissions in Canada, about 185 000 are associated with an AE and close to 70 000 of these are potentially preventable.

Full Reference

[Link to Abstract (HTML)](#) [Link to Full Text (PDF)](#)
Background: Opening Points

- Definition of adverse events (AEs):
 - AEs are unintended injuries or complications resulting in death, disability or prolonged hospital stay that arise from health care management

- Rate of adverse events among hospital patients is an important indicator of patient safety
 - In various countries, hospital chart reviews have revealed that 2.9–16.6% of patients in acute care hospitals experienced 1 or more AEs

- 37–51% of AEs judged to be potentially preventable
 - However, some are the unavoidable consequences of health care

Background: Study Rationale

- Several US studies indicated that substantial harm can result from care, but these results had not been generalized to Canada
 - US Institute of Medicine report “To Err is Human” had very little impact on Canadian healthcare policy makers and system leaders

- There was little Canadian data on AEs in hospital patients
 - “The failure of US data and studies to prompt greater attention to patient safety in Canada made us realize that local data was needed.”
Results: Key Findings

- Physician reviewers identified AEs in a total of 255 charts
- Weighted AE rate was 7.5 per 100 medical or surgical hospital admissions
- Weighted preventable AE rate was similar across all three hospital types
- More than a third of AEs judged to be highly preventable (36.9%)
 - 9% of deaths associated with an AE judged to be highly preventable
- Most patients who experienced an AE recovered without permanent disability
 - 64.4% resulted in no disability, or minimal to moderate impairment
 - However, there was significant morbidity and mortality associated with AEs
 - 5.2% resulted in permanent disability
 - 15.9% resulted in death

Results: Key Findings (2)

- Patients who experienced AEs experience longer hospital stays than those without AEs
 - Overall, AEs led to an additional 1,521 hospital days
- Rate of AE varied among different types of services:
 - 51.4% occurred in patients receiving surgical care
 - 45% occurred in patients receiving medical care
 - Most commonly associated with drug or fluid related events
 - 3.6% occurred with other services (dentistry, podiatry, etc.)
- Patient characteristics
 - Men and women experienced equal rates of AEs
 - Patients who had AEs were significantly older (mean 64.9 years) than those who did not (mean 62.0 years)
Author Reflections: Lessons and Advice

• If one thing in the study could be done differently...
 • Spend more time training data collectors, and train everyone at once (~ three days of training)
 • Implement web-based data collection

• Advice for young researchers
 • “Find important questions first!”

• Feasibility and applicability in developing countries
 • Dependent upon the quality of documentation in patient files and the availability of experienced researchers and project managers
 • Feasible if good quality medical records are available

Author Reflections: Overcoming Barriers

• Steps taken to ensure study success:
 • Trained provincial data collectors together to help ensure that each provincial team applied the methods in a consistent fashion
 • Automated the data collection template to improve reliability and facilitate remote transfer of data to a secure computer server
 • Created a series of “test” charts to help ensure reliability after the training and before data collection began
 • Monitored data collection closely, reviewing the results from each team or even working with local reviewers to improve data collection procedures
Understanding Causes: Andrews

• Objective
 • To enhance understanding of the incidence and scope of adverse events as a basis for preventing them.

• Methods
 • A prospective, observational design analyzing discussion of adverse events during care of all patients admitted to 3 units of a large teaching hospital.
 • Ethnographers attended regularly scheduled meetings of health care providers and recorded and classified all adverse events discussed.

• Results
 • Of the 1047 patients studied, 185 (17.7%) had at least one serious adverse event (linked to the seriousness of the patient's underlying illness).
 • Patients with long stays in hospital had more adverse events; likelihood of an adverse event increased about 6% for each day of hospital stay.

• Conclusion
 • There is a wide range of potential causes of adverse events and particular attention must be paid to errors with interactive or administrative causes.
 • Health-care providers' own discussions of adverse events can be a good source of data for proactive error prevention.

Introduction: Study Details

• Full Reference

Link to Abstract (HTML) Link to Full Text (PDF)
Background: Study Rationale

- Idea of study was to enhance understanding of the incidence of adverse events as a basis for preventing them
 - Data on frequency of adverse events related to inappropriate care in hospitals often comes from medical records
- However, chart analyses alone may be inadequate to determine the frequency of adverse events
 - Doctors alerted research team to high level of errors in hospitals and described many errors not recorded in patients’ records

Methods: Study Design and Objectives

- **Design:** prospective, observational ethnographic study
 - Ethnographers recorded adverse events incidentally mentioned at regularly scheduled meetings and developed a classification scheme to code the data
- **Objectives:**
 - To undertake a study of potential adverse events in hospitalized patients and assess the incidence, cause and response to error
 - To develop a deeper understanding of adverse events than what may be available in after-the-fact analysis of medical records and prospective studies examining particular procedures
Methods: Study Population and Setting

- **Setting**: 3 units at a large, tertiary care, urban teaching hospital in the US
 - During the study there were 1,047 patients in the three units
 - One-third of the patients admitted more than once for a total of 1,716 admissions
- **Population**: attending surgeons and physicians, fellows, residents, interns, nurses, and other health-care practitioners on ten surgical services

Methods: Data Collection

- Four ethnographers trained in qualitative observational research chronicled discussion of adverse events at regular meetings
 - Each was given a month of additional training to enable them to carry out field work in a medical setting
 - Recorded information about all adverse events in patient care mentioned in discussions at these meetings
 - Did not ask questions or make clinical judgments
- Over a 9-month period ethnographers observed:
 - Attending physician rounds
 - Residents’ work rounds
 - Nursing shift changes
 - Case conferences
 - Additional scheduled meetings in three study units
 - Departmental and section meetings
Results: Key Findings

- Patient demographics
 - Patients were evenly distributed by sex and race
 - Source of payment reflected national distribution

- 17.7% (185) patients experienced serious events that led to longer hospital stays and increased costs to the patients
 - 37.8% of adverse events caused by an individual
 - 15.6% had interactive causes
 - 9.8% due to administrative decisions
 - The highest proportion (29.3%) of adverse events occurred during post-operative monitoring and care vs. during surgery itself

- Only 1.2% (13) of patients experiencing adverse events made claims for compensation

Results: Key Findings (2)

- Occurrence of initial adverse event linked to the seriousness of the patient’s underlying illness
 - Patients with long hospital stays had more adverse than those with short stays
 - Likelihood of experiencing an adverse event increased about 6% for each day of hospital stay
 - Occurrence of adverse events was broadly unaffected by differences in ethnicity, gender, payer class and age
Author Reflections: Lessons and Advice

• If one thing could be done differently in the study…
 • “We would fund greater distribution of the results and fund a follow-up study on how to use them to improve care.”

• Advice for researchers
 • “Researchers should work closely in the development of health care facilities to assure that research on incidence of errors is considered from the beginning.”

• Study is easily adaptable to various settings
 • E.g. such a study could be undertaken by one observer trained in participant observation with a computer and statistics program

Identifying Solutions: Overview Reggiori

• Methods
 • In a district rural hospital in Uganda, 850 surgical patients evaluated prospectively over a 3-year period to compare the clinical efficacy of:
 • Conventional postoperative penicillin therapy with single-dose ampicillin prophylaxis for hernia repair and ectopic pregnancy, and with
 • Single-dose ampicillin-metronidazole prophylaxis for hysterectomy and caesarean section.

• Results
 • High rate of postoperative infection after conventional treatment with penicillin for 7 days was significantly reduced with the new regimen: .
 • Length of stay and postoperative mortality rates also significantly reduced.

• Conclusion
 • Single-dose ampicillin prophylaxis with or without metronidazole, although rarely used in developing countries, is more cost effective than standard penicillin treatment.
Introduction: Study Details

Link to Abstract (HTML) Link to Full Text
Can be ordered online at: http://www.bjs.co.uk

Background: Opening Points

• Postoperative wound and deep infection remains a major concern in developing countries
 • In sub-Saharan Africa, records of postoperative infections are rare and few studies are available
 • Nonetheless, infection rates as high as 40-70% have been observed
• Poor conditions in hospitals may contribute to the high rate of postoperative infection
 • Poor sterility and hygiene of operating theatres and wards
 • Lack of trained personnel
 • Emergency surgical procedures often performed on patient presenting late in the course of the illness
Methods: Study Design and Objectives

- **Design**: randomized clinical trial
- **Objectives**:
 - To compare the clinical effectiveness of conventional postoperative penicillin therapy with single-dose ampicillin prophylaxis for hernia repair and ectopic pregnancy
 - To compare the clinical effectiveness of conventional postoperative penicillin therapy with single-dose ampicillin-metronidazole prophylaxis for hysterectomy and caesarean section
 - To measure the impact of different antimicrobial regimes on factors such as duration of postoperative stay and cost of care

Results: Key Findings

- Ampicillin regime significantly reduced the incidence of postoperative infection compared with conventional treatment with penicillin:
 - From 7.5 to 0% after hernia repair
 - From 10.7 to 2.4% after surgery for ectopic pregnancy
 - From 20 to 3.4% after hysterectomy
 - From 38.2 to 15.2% after caesarean section
- Patients receiving ampicillin also experienced significant reductions in:
 - Length of hospital stay
 - Postoperative mortality rates
 - Post-operative complications for patients with invasive surgeries (hysterectomy and caesarean)
Results: Cost Analysis

- Average cost for an admission day in Hoima Hospital in 1992 was $3 USD, inclusive of personnel cost, drug, supplies and utilities.
- Cost savings with new regimes:
 - Ampicillin-metronidazole regimens were cheaper than the full penicillin course.
 - Duration of postoperative stay was shorter for both groups of patients receiving ampicillin prophylaxis.

Conclusion: Main Points

- Postoperative infection rates in developing countries are often underestimated and undocumented.
- High postoperative infection rates can be significantly reduced, even in settings with resource constraints:
 - Antibiotic prophylaxis with ampicillin is effective in reducing the postoperative morbidity rate in clean general surgery and gynaecology operations.
 - Single-dose ampicillin prophylaxis, though rarely used in developing countries, is more cost effective than standard penicillin treatment.
Author Reflections: Lessons and Advice

- What barriers or problematic issues did you encounter when setting up the research and how did you overcome them?
 - "We faced challenges changing the behaviour and habits of paramedical staff.
 - "We convinced them by showing them that the infection rate was really different between the two regimes and that their work could be made easier."

- Research is feasible and applicable in other developing countries
 - "It is applicable everywhere because it is very simple and the result has nothing to do with the technological equipment."
Evaluating Impact: Study Details

Full Reference

Link to Abstract (HTML)

Link to Full Text (PDF)

Not currently available online

Background: Study Rationale

- Due to the ongoing economic crisis in US hospitals, only cost-effective quality improvement efforts are likely to be pursued
 - To reduce the cost of adverse drug events, the cost of these events must first be defined
- Research team wanted to be able to justify investing in interventions to reduce ADE frequency
 - Lots of scepticism, especially on the part of Chief Financial Officers
Methods: Study Design

- **Design**: cost analysis using a nested control study within a prospective cohort study
 - Incidents detected by self-report by nurses and pharmacists and chart review and classified if reporting an ADE
 - Data on length of stay and charges obtained from billing data and estimated costs targeted for analysis

Methods: Data Collection

- Three methods of data collection:
 - Passive data collection: nurses and pharmacists reported incidents
 - Active data collection: nurse investigators solicited information from personnel regarding ADEs twice daily
 - Chart review: nurse investigators reviewed charts daily

- Types of data collected:
 - Patient data: demographics, primary insurer and impact of adverse drug event during hospitalization
 - Outcome variables: length of stay and total charges
Results: Key Findings

- Length of stay increased by 2.2 days for all ADEs and 4.6 days for preventable ADEs
- Total costs increased by $3244 for all ADEs and $5857 for preventable ADEs

Conclusion: Main Points

- Substantial costs of adverse drug events to hospitals should provide incentives to invest in efforts to prevent these events
 - Estimates found in this study are conservative since they do not include the cost of injuries to patients or malpractice costs
- Hospitals can justify devoting additional resources to develop systems that reduce the number of preventable ADEs
 - Not only improves patient care but also to reduces ADE-related expenses
Author Reflections: Lessons and Advice

- Advice for researchers
 - Consider adding an economic evaluation to primary safety epidemiological studies - expensive part is finding adverse events
 - Serious lack of data on these sorts of costs in different countries and settings - more data is desperately needed
- This kind of work is especially needed for developing countries in which resources tend to be scarce
 - Research feasible any time a group is collecting primary data about adverse events AND has access to cost or resource utilization data
 - Not an easy combination to identify!

Translating Evidence Into Practice

- Clean Care Is Safer Care
 - Handwashing using alcohol-based handrub

April 2009

Hand Hygiene Compliance Improvement in Pilot Sites

Baseline Follow-up

<table>
<thead>
<tr>
<th>Country</th>
<th>Baseline</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>69</td>
<td>56</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>Hong Kong SAR</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Italy</td>
<td>69</td>
<td>59</td>
</tr>
<tr>
<td>Mali</td>
<td>22</td>
<td>56</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>8</td>
<td>59</td>
</tr>
<tr>
<td>Saudi Arabia 1</td>
<td>95</td>
<td>75</td>
</tr>
<tr>
<td>Saudi Arabia 2</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Pakistan</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>China-Hong Kong</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Mali</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Pakistan</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Pilot Sites

Complementary Sites (>350)
Interactive

- Participant reports of research projects currently involved in or considering

References

- Full descriptions of more classic research studies on World Alliance website
 http://www.who.int/patientsafety/research/en/
Conclusions

- Five key domains in patient safety research
 - Selection of study type will depend on domain
 - Also on resources available
 - Qualitative and quantitative studies are both valuable
- Need more evaluations of solutions in particular
 - But often have to define problem in a particular setting and having data can enable move to action

Answer: Questions for Lecture 2, Principles of Patient Safety Research

(1) Descriptive research is always better than inferential research.
 b. False

(2) When is doing qualitative research especially helpful?
 c. both a and b

(3) When does it make most sense to do an observational research study?
 b. When the magnitude of a problem isn’t known

(4) What is the strongest research design type?
 d. Prospective
Thank You