EMF Epidemiology: State of the Science

Dr Leeka Kheifets
Head, Radiation Program
World Health Organization
Switzerland

WHO Meeting on EMF Biological Effects and Standards Harmonization in Asia and Oceania
Seoul, South Korea
22-24 October 2001
The Questions

• Driving the issue: leukemia and brain cancer

• New: breast cancer, neurodegenerative and heart disease

• Almost not a question: reproductive outcomes
 – CDHS studies?
Types of Epidemiologic Studies of ELF Exposure

• Residential
 – Wire code
 – Measurements

• Occupational

• Appliance use
Pooled Analyses of Childhood Leukemia

• Greenland et al., *Epidemiology*, 2000
 – 12 studies with fields; 4 with wire codes
 – Not including UK study
 – Field studies: 2,656 cases; 7,084 controls
 – Metric of choice: time-weighted average

• Ahlbom et al., *British J. Cancer*, 2000
 – 9 studies with fields; 2 with wire codes
 – Including UK study
 – Field studies: 3,247 cases; 10,400 controls
 – Metric of choice: geometric mean
Results: Greenland et al., 2000

- 2,145/6,275 cases/controls
- 318/529
- 94/150
- 99/130
Results: Ahlbom et al., 2000

<table>
<thead>
<tr>
<th>Magnetic Field (mG)</th>
<th>Odds Ratio (±95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>2,866/9,859</td>
</tr>
<tr>
<td>1-2</td>
<td>233/332</td>
</tr>
<tr>
<td>2-4</td>
<td>104/147</td>
</tr>
<tr>
<td>>4</td>
<td>44/62</td>
</tr>
</tbody>
</table>

- ELF
Measured Fields & Leukemia

<table>
<thead>
<tr>
<th>Summary OR</th>
<th>? 0.1?T (ref.)</th>
<th>>0.1?T, 0.2?T</th>
<th>>0.2?T, 0.3?T</th>
<th>>0.3?T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without covariate adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woolf</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>(0.82 – 1.21)</td>
<td>(0.68 – 1.40)</td>
<td>(1.37 – 2.67)</td>
<td></td>
</tr>
<tr>
<td>Mantel-Haenszel</td>
<td>1.00</td>
<td>0.98</td>
<td>0.96</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>(0.82 – 1.19)</td>
<td>(0.67 – 1.36)</td>
<td>(1.21 – 2.35)</td>
<td></td>
</tr>
<tr>
<td>Spline</td>
<td>1.00</td>
<td>1.04</td>
<td>1.21</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>(0.93 – 1.17)</td>
<td>(1.02 – 1.43)</td>
<td>(1.14 – 2.93)</td>
<td></td>
</tr>
<tr>
<td>With covariate adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woolf</td>
<td>1.00</td>
<td>1.08</td>
<td>0.97</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>(0.87 – 1.35)</td>
<td>(0.65 – 1.44)</td>
<td>(1.49 – 3.08)</td>
<td></td>
</tr>
<tr>
<td>Mantel-Haenszel</td>
<td>1.00</td>
<td>1.03</td>
<td>0.87</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>(0.81 – 1.31)</td>
<td>(0.55 – 1.37)</td>
<td>(1.48 – 3.34)</td>
<td></td>
</tr>
</tbody>
</table>

Greenland et al., 2000
Pooled Analysis of Childhood Leukemia Studies

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Relative Risks (95% Confidence Intervals)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measurement</td>
</tr>
<tr>
<td><0.1 ?T</td>
<td>1.00</td>
</tr>
<tr>
<td>0.1 - 0.2 ?T</td>
<td>1.05 (0.9 - 1.3)</td>
</tr>
<tr>
<td>0.2 - 0.4 ?T</td>
<td>1.15 (0.9 - 1.5)</td>
</tr>
<tr>
<td>>0.4 ?T</td>
<td>1.87 (1.1 - 3.2)</td>
</tr>
</tbody>
</table>

Ahlbom et al., 2000
Conclusions - Pooled Analysis

- A 2-fold increase in risk above 0.3 - 0.4 T
- Association more consistent with measured fields than with wire codes
- Attributable fraction estimate: 3%
- No confounding evident
- Selection bias may be a partial explanation
- Unlikely to be due to random variability
Childhood Leukemia Summary

- Childhood leukemia main driver in risk assessments
- Recent pooling efforts point to risk at 0.3 - 0.4+ T
- Animal studies negative
- Ongoing studies
 - Germany, Italy, Japan, U.S., UK
- Research needs:
 - High-exposure studies
 - Contact currents
 - Population mixing
 - Transients
 - Selection bias
Occupational Leukemia Meta-Analysis
Pooled & Individual Risk Estimates for 38 Leukemia Studies

Kheifets et al.
JOEM, 1997
Occupational Brain Cancer Meta-Analysis

Pooled & Individual Risk Estimates for 29 Brain Cancer Studies

Kheifets et al.
JOEM, 1995
Pooled Risk Estimates for Each Year

Kheifets et al.
JOEM, 1995
Occupational Leukemia & Brain Cancer

• Small risk at the limit of detection
• Few to no studies under way
• Research needs:
 – Exposure assessment based on job and environment
 – Electric fields
 – Combining residential and occupational exposure
 – Contact current exposure assessment
Breast Cancer

• Major women’s health (& public health) issue

• Tied (rightfully or wrongfully) to EMF, based mainly on prior laboratory research

• Hypothesis-based

• Epidemiologic studies largely negative
 – None designed to test the hypothesis
Breast Cancer Summary

• Animal studies inconsistent
 – German results not replicated in the U.S.
• MC-7 cells
 – Effect seen only in certain type of cells
 – Replicated in 3 to 4 laboratories
 – Extremely low exposures
Cardiovascular Disease: Lines of Evidence

Magnetic Field

Human Lab (overnight)

Magnetic Field +/- ? HRV +++ ? CV Risk

Clinical/Epidemiology 1985 – 99

Epidemiology (+/?)

(years – decades)
Cardiovascular Disease

- Association with acute mortality reported in one study
- HRV reduction in laboratory setting apparently inconsistent
- Two analyses of existing data under way
- Research needs:
 - Cardiovascular cause-of-death misclassification on death certificates
Neurodegenerative Diseases

- Increasingly geriatric population
- Suggested risks associated with occupational electrical factors (e.g., jobs, shocks)
- No prior studies specifically designed to examine EMF
- Little ongoing work
- Research needs:
 - Strong methodologic studies looking at electric shocks and other EMF exposures
Reproductive

- Overall negative epidemiologic and laboratory work
- Two recent analyses point to exposures not previously looked at
- Research needs:
 - Evaluate new data
IARC Monographs

- Initiated in 1969
- Criteria established in 1971, last update 1992
- Limited largely to the first step in risk assessment
- “Carcinogen”: exposure that is capable of increasing the incidence of malignant neoplasms (at any stage of the carcinogenesis)
- No recommendation is given with regard to regulation of legislation, as they are the responsibility of governments or other international organizations
- EMF - Volume #80
- 800+ agents have been evaluated
IARC Criteria

• For each disease classify human and animal data separately as:
 • Sufficient
 • Limited
 • Inadequate
 • Lack of effect

• Integrate the two classifications above (*in vitro* as support):
 • Is carcinogenic to humans (Group 1)
 • Probably is carcinogenic to humans (Group 2A)
 • Possibly is carcinogenic to humans (Group 2B)
 • Not classifiable (Group 3)
 • Is probably not carcinogenic to humans (Group 4)
A positive association has been observed between exposure to the agent, mixture or exposure circumstance and cancer for which a causal interpretation is considered by the Working Group to be credible, but chance, bias or confounding could not be ruled out with reasonable confidence.
Agents Classified by IARC (834)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinogenic to humans (75)</td>
<td>Asbestos, Mustard gas, Tobacco (smoked and smokeless), Gamma radiation</td>
</tr>
<tr>
<td>(usually based on strong evidence of carcinogenicity in humans)</td>
<td></td>
</tr>
<tr>
<td>Probably carcinogenic to humans (59)</td>
<td>Diesel engine exhaust, Sun lamps, UV radiation, Formaldehyde</td>
</tr>
<tr>
<td>(usually based on strong evidence of carcinogenicity in animals)</td>
<td></td>
</tr>
<tr>
<td>Possibly carcinogenic to humans (225)</td>
<td>Coffee, Styrene, Gasoline engine exhaust, Welding fumes</td>
</tr>
<tr>
<td>(usually based on evidence in humans which is considered credible, but for which other explanations could not be ruled out)</td>
<td></td>
</tr>
</tbody>
</table>
The Working Group

Tasks

? Ascertain that all appropriate data have been collected
? Select data based on scientific merit
? Prepare accurate summary to enable reader to follow the reasoning
? Evaluate results of epidemiologic and experimental studies
? Evaluate data relevant to mechanisms of action
? Make overall evaluation of carcinogenicity to humans
The Working Group

Membership

? 23 participants

? Expertise: epidemiology, toxicology, biology, biophysics, statistics, risk assessment, exposure assessment

? 11 countries
Conclusions

- ELF MAGNETIC FIELDS classified as Group 2B “Possible Carcinogenic”
 - based on epidemiologic studies of childhood leukemia
 - animal data inadequate

- Other exposures and outcomes considered “inadequate to classify”
Types of Epidemiologic Studies of RF Exposure

- Populations near antennas and base stations (including cluster studies)
- Occupational/Military personnel studies
- Cell phone users
Critical Exposure Parameters in Cell Phone Studies

- Number of calls and call duration
- Power level of cell phone
- Left- or right-hand use
- User positioning of phone at the face
- Phone type / model
Studies of General Population

- Mostly studies of clusters next to transmitters
- Focus on leukemia; other cancers include brain and bladder cancer and skin melanoma
- Inconsistent results with few statistically significant findings (childhood leukemia?)
Limitations

- Ecologic fallacy
- Small numbers
- Previously identified clusters
- Potential confounding
- Exposure assessment, exposure assessment, exposure assessment
Occupational Studies of RF Exposure

- Few cohort and case-control studies
- Outcomes of interest: leukemia and brain cancer (other outcomes include uveal, testicular, breast and lung cancer)
- Inconsistent, unreplicated results for various cancer types
Limitations

- Job title classification
- Lack of measurements
- Lack of control for potential risk factors
- Use of external comparison groups
Cell Phone Studies

- Three case-control and two cohort studies of cell phone users

- Focus on brain cancer

- Results negative
 - Hints of location of tumor and handedness
Limitations

- Crude assessment
- No measurements
- Low usage (?)
- Short latency
- Hospital controls
• Similar:
 – High public awareness
 • Focus on involuntary exposure from powerlines and antennas
 – Potentially large public health impact
 – Difficulties in exposure assessment exacerbated by unknown biophysical mechanism
Differences

ELF Studies
- Much more sophisticated exposure assessment
- More plentiful
- Addressing broader range of outcomes
- Somewhat more consistent

RF Studies
- Severely limited by exposure assessment which is likely to be even more difficult than for ELF
- Evolving technology
- Limited by latency
- Only a few outcomes examined (mostly cancer)
- Limited methodologically
Complexities of EMF Science

- Epidemiology
 - Large misclassification
 - Small risk
 - Lack of consistency

- Animal studies
 - Relevant exposure
 - Right model
 - Power to detect small risk

- In Vitro
 - Lack of robust effect
 - Replication
 - Relevance

- Integration
 - Multidisciplinary approach needed
 - Carcinogenesis is a complex and highly variable process