14 REFERENCES


Adair RK (1994). Biological responses to weak 60 Hz electric and magnetic fields must vary as the square of the field strength. Proc Natl Acad Sci USA, 91(20):9422-9425.


AGNIR - Advisory Group on Non-Ionising Radiation. Particle deposition in the vicinity of power lines and possible effects on health. Chilton, National Radiological Protection Board, 2004 (Documents of the NRPB, Vol. 15, No. 1).


Allen SG et al. Review of occupational exposure to optical radiation and electric and magnetic fields with regard to the proposed CEC physical agents directive. Chilton, National Radiation Protection Board, 1994 (NRPB-R265).
Anderson LE et al. (2000). Effects of 50- or 60-hertz, 100 microT magnetic field exposure in the DMBA mammary cancer model in Sprague-Dawley rats: possible explanations for different results from two laboratories. Environ Health Perspect, 108(9):797-802.
Asanova TP, Rakov AI (1966). [The state of health of persons working in the electric field of outdoor 400 and 500 kV switchyards]. Gig Tr Prof Zabol, 10:50-52.
Asanova TP, Rakov AI. The state of health of persons working in the electric field of outdoor 400 and 500 kV switchyards. Piscataway, NJ, Institute of Electrical and Electronic Engineers, 1972 (Power Engineering Society report 10).
Bakos J et al. (1997). Urinary 6-sulphatoxymelatonin excretion is increased in rats after 24 hours of exposure to vertical 50 Hz, 100 µT magnetic field. Bioelectromagnetics, 18(2):190-192.


388


Cooper TJ. Occupational exposure to electric and magnetic fields in the context of the ICNIRP guidelines. Chilton, Didcot, National Radiological Protection Board, 2002 (NRPB-W24).


Decat G, Van den Heuvel I, Mulpas L. Monitoring survey of the 50 Hz magnetic field for the estimation of the proportion of Belgian children exposed to the epidemiological cut-off points of 0.2, 0.3, and 0.4 micro Tesla. Erembodegem, Flemish Environmental Agency, 2005 (Final Report of the BBEMG Research Contract).


396


Gangi S, Johansson O (2000). A theoretical model based upon mast cells and histamine to explain the recently proclaimed sensitivity to electric and/or magnetic fields in humans. Med Hypoth, 54:663-671.


Goodman R et al. (1994). Increased levels of hsp 70 transcript induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem Bioenerg, 33:115-120.


Graham C et al. (2000e). Exposure to strong ELF magnetic fields does not alter cardiac autonomic control mechanisms. *Bioelectromagnetics*, 21(3):413-421.


Häussler M et al. (1999). Exposure of rats to a 50-Hz, 100 µT magnetic field does not affect the ex vivo production of interleukins by activated T or B lymphocytes. *Bioelectromagnetics*, 20(5):295-305.


Hong SC et al. (2001). Chronic exposure to ELF magnetic fields during night sleep with electric sheets: effects on diurnal melatonin rhythms in men. Bioelectromagnetics, 22(2):135-143.


Huuskonen H et al. (1998a). Effects of gestational exposure to a video display terminal-like magnetic field (20-kHz) on CBA/S mice. Teratology, 58(3):190-196.


IEEE Standards Coordinating Committee 28. IEEE standard for safety levels with respect to human exposure to electromagnetic fields, 0-3 kHz. New York, NY, IEEE - The Institute of Electrical and Electronics Engineers, 2002 (IEEE Std C95.6-2002).


Ishido M (2001). Magnetic fields (MF) of 50 Hz at 1.2 μT as well as 100 μT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin a1 receptor in MF-sensitive MCF-7 cells. *Carcinogenesis*, 22(7):1043-1048.


Kato M et al. (1994d). Recovery of nocturnal melatonin concentration takes place within one week following cessation of 50 Hz circularly polarized magnetic field exposure for six weeks. Bioelectromagnetics, 15:489-492.


409


Lovely RH et al. (1992). Rats are not aversive when exposed to 60-Hz magnetic fields at 3.03 mT. *Bioelectromagnetics*, 13:351-362.


McKinlay AF et al. Review of the scientific evidence for limiting exposure to electromagnetic fields (0-300 GHz). Chilton, Didcot, National Radiological Protection Board, 2004 (Documents of the NRPB, Vol. 15, No. 3).


NIEHS - National Institute of Environmental Health Sciences. Questions and answers about EMF electric and magnetic fields associated with the use of electric power. Washington, DC, National Institute of Environmental Health Sciences, 1995 (DOE/EE-0040).


Otaka Y et al. (2002). Carcinogenicity test in B6C3F1 mice after parental and prenatal exposure to 50 Hz magnetic fields. Bioelectromagnetics, 23(3):206-213.


Pasquini R et al. (2003). Micronucleus induction in cells co-exposed in vitro to 50 Hz magnetic field and benzene, 1,4-benzenediol (hydroquinone) or 1,2,4-benzenetriol. Toxicol In Vitro, 17(5-6):581-586.


Podd J et al. (2002). Brief exposure to a 50 Hz, 100 microT magnetic field: effects on reaction time, accuracy, and recognition memory. *Bioelectromagnetics*, 23(3):189-195.


Rogers WR et al. (1995a). Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates. *Bioelectromagnetics*, 16(Suppl 3):111-118.


Roy S et al. (1995). The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils in increased by 0.1 mT (60 Hz) magnetic field. *FEBS Lett*, 376:164-166.


Spectrale SG et al. (1998). The neurotoxin 1-methyl-4-phenylpyridinium is sequestered within neurons that contain the vesicular monoamine transporter. *Neuroscience*, 84(4):1177-1185.


Stuchly MA et al. Validation of computational methods for evaluation of electric fields and currents induced in humans exposed to electric and magnetic fields. Palo Alto, CA, Electric Power Research Institute, 1998 (EPRI TR-111768).


Yamaguchi DT et al. (2002). Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. *J Cell Physiol*, 190(2):180-188.


