Improving influenza vaccine virus selection

Wenqing Zhang

8th Meeting with International Partners on Prospects for Influenza Vaccine Technology Transfer
17 – 18 March 2015 • Sao Paulo

Influenza – a virus problem

- Constantly evolving
 - Multiple species
 - Multiple directions

- Rapid spreading
 - without administrative boundaries

- Surveillance & control measures:
 - Timely
 - Continuous
 - Global

Courtesy of Drs. K. Gopal Murti and Robert Webster
St Jude Children’s Research Hospital of Memphis, Tennessee, USA.
Influenza Vaccine Composition

- **1973** - First formal recommendation on influenza vaccine composition issued.

- **17-18 Feb 1986** - First documented WHO annual consultation on composition of influenza vaccines and meeting with influenza vaccine manufacturers in Geneva.

- **Since 1998** – WHO biannual recommendations on composition of influenza vaccines for northern and southern hemispheres.

GISRS – the foundation

- Birth of GISN 1952
 - 2 WHOCCs
 - 59 NICs/42 countries

- 1962
 - 2 WHOCCs
 - 59 NICs/42 countries

- 1984
 - 3 WHOCCs
 - 108 NICs/76 countries

- 2004
 - 5 WHOCCs
 - 112 NICs/93 countries

- 2008
 - 5 WHOCCs
 - 121 NICs/93 countries

- 2012
 - 6 WHOCCs
 - 136 NICs/106 countries

- Mar 2015
 - 6 WHOCCs
 - 142 NICs/112 countries

- Virus monitoring and risk assessment
- Laboratory diagnostics
- Vaccine support
- Capacity building
- Communication, networking and ad-hoc tasks
GISRS – the mechanism

A recent example: response to pandemic A(H1N1) 2009 (efficiency)

- Confirmed *the* pandemic virus in laboratory – the trigger of all subsequent response
 - (0 day) Gene sequences for diagnostics available on 25 April
 - (+ 3 days) First diagnostic protocol available on 28 April
 - (+ 7 days) First RT-PCR kit sent on 2 May
 - (+ 31 days) Recommended pandemic vaccine virus on 26 May
 - (+ 32 days) First available candidate vaccine reassortant virus on 27 May

Process of influenza vaccine virus selection and development
Data serving vaccine virus selection

Comparative titres by haemagglutination inhibition assays

Sequence data
- mainly HA & NA
- Some others e.g. M

Antiviral drug resistance
- Oseltamivir
- Zanamivir
- Other compounds

Other information
- Growth in eggs & cells

Also used:
- Epi data, Plaque reduction, Virus neuts, Structural data, VE

Human vaccine serology

Vaccine virus selection

Revised from Ian Barr slide

Improving vaccine virus selection

- Opportunities for improvement emerged: awareness, demands, technologies
 - Since 2003 H5N1 re-emergence
 - Since 2009 H1N1 Pandemic

- Global platform provided by WHO
 - 1st Consultation Jun 2010
 - 2nd Consultation Dec 2011
 - 3rd Consultation Apr 2014: 128 participants from 51 countries
 - 4th under planning in 2015

- All consultations
 - Participation by all key players worldwide
Areas under continuous review

- Global surveillance
- Characterization of antigenicity and antibody response
- Technologies and tools
- Manufacturing and regulatory perspectives

Global surveillance

- GISRS surveillance
 - Global/regional approaches
 - Country & population coverage (51%; 91%)
Global surveillance

- GISRS surveillance
 - Global/regional approaches
 - Country & population coverage (51%; 91%)
 - Quality (EQAP) and logistics (SFP)
 - Virus detection and characterization
 - >1.9 million specimens tested by GISRS in 2014
 - Timely information sharing
Global surveillance

- GISRS surveillance
 - Global/regional approaches
 - Country & population coverage (51%; 91%)
 - Quality (EQAP) and logistics (SFP)
 - Virus detection and characterization
 - >1.9 million specimens tested by GISRS in 2014
 - Timely information sharing
 - Regional capacity building
 - Individual country approaches – country specific

- PIP Framework – virus sharing and benefit sharing framework
 - Strengthening GISRS pandemic preparedness and response

Global surveillance

- Epidemiologic and disease surveillance
 - ILI and SARI surveillance in countries
 - WHO influenza surveillance standards published in Jan 2014
 - National surveillance system building and linking to policy making

- Efforts from WHO CCs
 - Increasing egg isolates: H3N2 (0.8% 2011, 11% 2013, 18% 2014)
 - Addressing emerging issues e.g. egg vs. cell isolates; low HA titers of some H3N2 viruses

- Collaboration with vet sector: GISRS-OFFLU collaboration

- Collaboration with vaccine manufacturers
 - Provision of sera from vaccinees
 - Egg isolation and hgr development CRADA
 - Use of isolates from qualified cell lines
Global surveillance

- **Specific issues on vaccine composition in tropics and sub-tropics**
 - WHO recommendations so far for NH and SH
 - Complexity in tropics and sub-tropics
 - Strengthened surveillance providing needed data for policy
 - Seasonality
 - Virological patterns
 - VE
 - Efforts globally
 - Countries
 - WHO
 - BMGF, GAVI and others

Global surveillance

- **Challenges, among many, main …**
 - Timeliness, representativeness/quality of viruses and information sharing
 - Timing of WHO vaccine composition recommendations
 - Just at/right after peak
Areas under continuous review

- Global surveillance
- Characterization of antigenicity and antibody response
- Technologies and tools
- Manufacturing and regulatory perspectives

Antigenicity and antibody response

HA-focused

- HAI, surrogate for virus neutralization - widely used
 - Currently vaccine virus selection process largely based on HAI
- Challenges and efforts in WHO CCs
 - Differential reactivities of cell- vs. egg- derived viruses
 - Complications of binding of NA to RBC
- Limited progress
 - Synthetic bead - based
 - Non-bead technologies based on recombinant proteins
- No viable alternative to HAI emerged
Antigenicity and antibody response

NA-focused

- NA and NA antibodies contributing to immunity
- Regulatory requirement
 - No precise determination and standardization
- Continuous efforts on better understanding of patterns of antigenic drift of NA and its impact on vaccine virus selection

Antigenicity and antibody response

Antibody-focused

- “Antibody landscape” approach
 - “antigenic mapping” → understandings of quality and breadth of
 - Antibody response to HA (and NA)
 - Influence of prior immunity on vaccination responses
 - “Back-boost” effect
 - With advances in prediction of virus evolution, potential for selecting “optimum vaccine virus”
Areas under continuous review

- Global surveillance
- Characterization of antigenicity and antibody response
- Technologies and tools
- Manufacturing and regulatory perspectives

Technologies and tools

- Opportunities and challenges: high-throughput methodologies
 - Whole genome beyond HA and NA
 - Outbreak investigation, Risk Assessment
 - Need to understand and use comprehensive datasets
 - Require expertise and resources

- Application of synthetic genomics technology
 - H7N9 vaccine virus development

- Application of RG
 - Candidate vaccine viruses
 - Reconstruct viruses e.g. ancestral H5N1
Technologies and tools

- Mathematical modeling
 - Integrating antigenic and genetic data → factors determining antigenic drift
 - “Viral fitness” concept → predict the evolution of HA sequence clades
 - Retrospective results encouraging
- System genetics and systems biology concept, potential to
 - Identify specific host-susceptibility genes
 - Identify diagnostic and prognostic markers
 - Understand pathogenic and virulence mechanisms
 - Evaluate vaccine performance and response: molecular correlates of immune responsiveness and immunogenicity
- “Big data” – a concept
 - 3Vs
 - Future depends on many advances

Areas under continuous review

- Global surveillance
- Characterization of antigenicity and antibody response
- Technologies and tools
- Manufacturing and regulatory perspectives
Manufacturing and regulatory perspectives

- Influenza vaccine cycle \(\rightarrow\) extremely tight timeframe
 - Manufacturing one component “at risk” before WHO recommendation
 - Efficient communication between GISRS (CCs and ERLs) and manufacturers

- Optimizing “backbone” \(\rightarrow\) hgr development and yield
 - Efforts from US

- Increasing regulatory demands on new vaccine types
 - Quadrivalent, cell-based, adjuvanted vaccines, recombinant protein

Summary

- Prediction challenging
 - Limited understanding on biological mechanism of virus evolution
 - In general tools so far are retrospective, hypothetical and experimental

- Measures on the correlation of antigenicity and vaccine effectiveness at clinical endpoint
 - Measures on effectiveness yet to be established

- Better vaccine technology – to shorten the production period
 - Allow for "later" timing for vaccine virus selection

- Better vaccines needed
 - Broad-spectrum of protection
 - "Universal" vaccines
 - Taking into consideration of current zoonotic influenza situation

- WHO commitment and partnership
Gracias

Thank you

谢谢