Global Vaccine Development Pipeline

Rick Bright, PhD
Acting Director, Influenza Division
Biomedical Advanced Research and Development Authority (BARDA)

7th Meeting with International Partners on Prospects for Influenza Vaccine Technology Transfer To Developing Country Vaccine Manufacturers
25-26 March 2014
Dubai, UAE
Public Health Impact of Influenza

• Significant annual morbidity and mortality
 – Globally 3-5 million severe illnesses and 0.25-0.5 million deaths

• Groups at high risk of severe disease
 – Very young and very old
 – Chronic underlying cardio-pulmonary disease
 – Pregnant women
 – Immunocompromised

• Vaccination is the cornerstone of prevention
 – Seasonal vaccines only 30% to 50% efficacy in older adults
 – Global shortfall of vaccine supply for a pandemic
Influenza Vaccine Challenges:
Limitations of Current Vaccines

- Vulnerable to antigenic drift and shift
 - Antibodies target highly variable regions of HA and NA
 - Single site mutations can impact immunogenicity
- Provide minimal cross-protection within subtypes or against other subtypes of influenza
- Short duration of immunity, particularly in at-risk populations (e.g., pediatric, geriatric)
- Requires viral isolate for production
- Predominantly produced in chicken eggs
- Avian influenza strains will likely require adjuvant
- Vaccine efficacy is modest

There is a need for improved, more effective influenza vaccines.
Estimated Effectiveness of Current Influenza Vaccines (US)

Season	**Overall Adjusted Vaccine Effectiveness (95% CI)**
2011 – 2012* | 47% (36 to 56)
2012 – 2013* | 56% (47 to 63)
2013 – 2014+ | 61% (52 to 68)

Strain and Age Group

Season	**Strain**	**Age Group**	**Vaccine Effectiveness (95% CI)**
2011 – 2012*	A(H3N2)	18 – 49	33% (-5 to 57)
A(H3N2)	50 – 64	39% (-13 to 67)	
(H3N2)	≥9; Vaccinated prior to 2010-2011 only	-8% (-69 to 30)	
2012-2013* | A(H3N2) | ≥65 | 9% (-84 to 55)

* Interim adjusted estimates Feb 22, 2013 CDC *MMWR*
* Mid-season adjusted estimates Feb 21, 2014 CD *MMWR*
Influenza Vaccine Landscape

Pre Clinical

<table>
<thead>
<tr>
<th>Egg-based inactivated</th>
<th>CSL Biotherapies</th>
<th>torkak</th>
<th>Split w/ Iscomatrix</th>
<th>IECA</th>
<th>Sinovac</th>
<th>MSD, WIV</th>
<th>Egg Inactivated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proprietary Adjuvant</td>
<td>VACERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPO</td>
<td>Vero, Influject</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 1

<table>
<thead>
<tr>
<th>CSL Biotherapies</th>
<th>Zydus</th>
<th>WIV</th>
<th>Split w/ Iscomatrix</th>
<th>IECA</th>
<th>MSD, WIV</th>
<th>Egg Inactivated</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vero, Influject</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 2

<table>
<thead>
<tr>
<th>CSL Biotherapies</th>
<th>Zydus</th>
<th>WIV</th>
<th>Split w/ Iscomatrix</th>
<th>IECA</th>
<th>MSD, WIV</th>
<th>Egg Inactivated</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vero, Influject</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 3

<table>
<thead>
<tr>
<th>CSL Biotherapies</th>
<th>Zydus</th>
<th>WIV</th>
<th>Split w/ Iscomatrix</th>
<th>IECA</th>
<th>MSD, WIV</th>
<th>Egg Inactivated</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vero, Influject</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Market Approval

<table>
<thead>
<tr>
<th>CSL Biotherapies</th>
<th>Zydus</th>
<th>WIV</th>
<th>Split w/ Iscomatrix</th>
<th>IECA</th>
<th>MSD, WIV</th>
<th>Egg Inactivated</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vero, Influject</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAIV

<table>
<thead>
<tr>
<th>Zymo</th>
<th>CSL Biotherapies</th>
<th>Vero, Influject</th>
<th>MSD, WIV</th>
<th>Egg (Thailand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPO</td>
<td>Vero, Influject</td>
<td></td>
<td>MSD, WIV</td>
<td>Egg (Thailand)</td>
</tr>
</tbody>
</table>

Recombinant (SUV & VLPs)

<table>
<thead>
<tr>
<th>Zymo</th>
<th>CSL Biotherapies</th>
<th>Vero, Influject</th>
<th>MSD, WIV</th>
<th>Egg (Thailand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPO</td>
<td>Vero, Influject</td>
<td></td>
<td>MSD, WIV</td>
<td>Egg (Thailand)</td>
</tr>
</tbody>
</table>

Universal

<table>
<thead>
<tr>
<th>Zymo</th>
<th>CSL Biotherapies</th>
<th>Vero, Influject</th>
<th>MSD, WIV</th>
<th>Egg (Thailand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPO</td>
<td>Vero, Influject</td>
<td></td>
<td>MSD, WIV</td>
<td>Egg (Thailand)</td>
</tr>
</tbody>
</table>

DNA

<table>
<thead>
<tr>
<th>Zymo</th>
<th>CSL Biotherapies</th>
<th>Vero, Influject</th>
<th>MSD, WIV</th>
<th>Egg (Thailand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPO</td>
<td>Vero, Influject</td>
<td></td>
<td>MSD, WIV</td>
<td>Egg (Thailand)</td>
</tr>
</tbody>
</table>

Seasonal

- Vical
- inovio

Pandemic

- DNA
- Vical
- inovio

Seasonal & Pandemic

- DNA
- Vical
- inovio

US License

- DNA
- Vical
- inovio

20MAR2014
Which Flu Vaccine is Right for You?

Get Vaccinated and Prevent the Spread of Infection

3-STRAIN
- The standard flu shot
- Great for:
 - infants > 6 months
 - healthy adults
 - pregnant women

HIGH-DOSE
- Helping the elderly avoid flu complications like pneumonia or even death
- Great for: age 65 or older

4-STRAIN
- Protects against B-class influenza, which affects young children
- Great for:
 - kids
 - healthy adults

NASAL SPRAY
- Eliminates needles
- Great for:
 - squimmy kids
 - healthy people
 - ages 2–49

“NEEDLE-FREE”
- Contains micro-needles that touch just the surface of the skin
- Great for:
 - anyone afraid of needles
 - ages 18–64

EGG-FREE
- Cultured in caterpillar cells
- Great for:
 - egg-allergic people

U.S. Pandemic Influenza Vaccine Development Strategy: Multi-Step & Integrated Approach

Cell-based Vaccines
- FLUCELVAX® Licensed 01/16/13
- Q-Pan H5N1 Licensed 11/20/2013

Egg-based Vaccines
- H5N1 Vaccine Licensed 04/17/07

Recombinant Vaccines
- Flublok® Licensed 01/16/13

Antigen-Sparing Vaccine Technology

Universal Vaccines
- Advanced Development Begins FY15

Manufacturing Improvements

Influenza Vaccine Manufacturing Improvement Initiative

• Novel set of optimized donor viruses
• Faster sterility assays
• Reagent calibration and potency assays

Universal Influenza Vaccines

• What is a “universal vaccine”?
 – Idealized vaccine: single vaccine for any influenza A subtype
• Could be used for several seasons
 – Remove annual ‘guesswork’ for strain selection
 – Reduce production costs
 – Eliminate vaccine mismatches
 – Reduce potential for vaccine shortages
 – Increase global supply of vaccine
• Stockpile of vaccine for epi/pandemics
• Year round production
Universal Influenza Vaccine
Target Characteristics

• **Vaccine Target: All influenza A subtypes**
 – Nasal > intramuscular > intradermal administration
 – Low antigen dose - safe and effective

• **Duration of response**
 – Single dose: annually < biannually < decennially

• **Target morbidity or mortality as endpoint of efficacy?**
 – Reduction in spread of disease

• **Population targeted**
 – < 6mo – 85+ years of age

• **Storage conditions**
 – Room temperature
Universal Vaccine Strategies
Leveraging Old and New Discoveries

- Identify broadly reactive epitopes (HA Stalk, M2 extracellular, NP)
- Multi-epitope vaccines
- Vector delivered vaccine
- Target occluded sites

- Broaden B cell epitope recognition
- Th1 vs Th2 responses
- Humoral vs Cell-mediated

Vaccine Design
Adjuvants
Administration

HA1 (variable region)
HA2 (conserved region)

Source: NIAID http://tinyurl.com/69n9lap

Example Approaches to Develop More Effective Influenza Vaccines

<table>
<thead>
<tr>
<th>Company</th>
<th>Clinical Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSN: Chimeric HA</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ITS</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PaxVax</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Computationally Optimized Broadly Reactive Antigen</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Developmental Challenges for Universal Vaccines

• No universal definition or target product profile
• Regulatory science will need to evolve with the technical science development
 — Protective immune responses may be to something other than the HA protein (non-HAI)
 — New surrogates of immunity may need to be identified
 — Alternate potency/release assays will be needed
• Large scale efficacy trials or other “creative” clinical development approaches may be required
• Funding is limited
 — Most candidates are in preclinical development stage
 — Each promising candidate could cost up to $1B USD for development

Final Thoughts

• There has never been a greater variety of influenza vaccines available to address population variety than there are today.

• The landscape of new influenza vaccine development is active and rapidly evolving – 94+ products/candidates.

• Technical and regulatory challenges exist for innovative technologies.

• Continued scientific discoveries provide greater opportunities for innovation.

• While the field of influenza vaccine types appear to be moving towards a variety of niche vaccines in the near term, it is apparent from the landscape that the ultimate aim is to develop a single, more effective vaccine that could be used by all populations.
US H7N9 Vaccine Clinical Trials

- HHS/BARDA-supported H7N9 vaccines in clinical trials:
 - Novavax (recombinant-based VLP +/- Iscomatrix) (Matrix M)
 - Novartis (cell-based inactivated, subunit +/- MF59)
 - MedImmune (egg-based LAIV) – with NIH
 - GSK (egg-based inactivated, subunit +/- AS03)
 - H7N1 vaccine study - initial dose finding studies
 - H7N9 vaccine Phase 2 study
 - sanofi pasteur (egg-based inactivated, subunit) (Mix & Match Studies conducted by NIH)

- In general, all vaccines well tolerated

- Limited preliminary data indicate that two doses of vaccine delivered with adjuvant are needed to induce sufficient immunity as measured by HAI or MN
Rick Bright, PhD
Acting Director
Influenza Division
BARDA
U.S. Department of Health and Human Services

Rick.Bright@HHS.GOV