Sustainable Pandemic Influenza Vaccine Manufacturing in Developing Countries

March 2012
WHO Partners Meeting, Serbia
Robert Huebner, PhD
Acting Director, BARDA Influenza Division
Conclusions So Far

• Long term sustainability:
 – Egg based production may offer limited future expansion capabilities to new vaccine markets
 • Adapting to new technologies will be challenging
 – Microbial production has an expanding set of possible ‘sustaining’ products

• Pandemic influenza preparedness
 – Microbial production has higher technology risks for pandemic influenza vaccines
 – Greenfield facility construction is not necessary where
 • Egg based products are currently manufactured
 • High risk and long time-lines to pandemic preparedness are acceptable (e.g. non-egg based systems)
 – Near term preparedness requires greenfield or significant facility retrofitting where egg-based products are not currently manufactured.

• Any decision requires a careful assessment of needs, risks and resources.
Barriers to Sustainable Pandemic Influenza Vaccine Manufacturing in Developing Countries

• Ideally local/domestic seasonal influenza vaccine market supports pandemic preparedness

• Small market for seasonal influenza vaccines in developing countries
 — Limited demonstration of relevance to immediate health priorities of developing countries
 — Developing country public health policies rarely address influenza vaccination for the general population

• Resource limitations
 — Facility construction costs
 — Facility maintenance costs

• Training opportunities for personnel in biological manufacturing are limited and requires a specialized skill-set.
Outline of Survey Approach to Identify Sustainable Solution

1. Assess technical feasibility of multiproduct facilities in developing country settings
 - Pandemic Influenza vaccine and what… Seasonal influenza? Yellow fever? HiB? Crossover product depends on existing manufacturing capabilities as well as domestic requirements.
 - Single-use technology maturity/adoption trends

2. Mixture of dedicated buildings and multiproduct approaches
 - Adoption occurs in large pharma where clear benefits exist
 - Are there examples of multiproduct facilities in developing countries?

3. High level production scenarios including
 - Possible influenza vaccine alternatives
 - Egg vs Cell vs Bacterial
Single Product Facilities (if no seasonal)
• Purpose built pandemic response manufacturing facility is not self-sustaining
• Possible dedicated workforce

Multi-product Facilities
• Primarily employed by CMOs, although some adoption by ‘large pharma’
• Share resources
 – Workforce
 – WFI, HVAC, Utilities, Quality, Facility
What Companion Products Should be Paired with Influenza Vaccine:

• Satisfy a regional market requirement
• Coincide with current and planned manufacturing capabilities
• Have previously accessed technology transfer pathways
• Sufficiently advanced development to increase probability of successful insertion into market
• Capture risk and risk tolerance of organization
• Marry correct influenza vaccine technology to the best alternative product
 – Influenza vaccine technology options include
 • Production options: egg-based, cell (mammalian, insect) or bacterial
 • Vaccine technologies: LAIV, IIV or recombinant SUV
Influenza Vaccine Landscape and Risk

Market Approval

<table>
<thead>
<tr>
<th>Phase 3</th>
<th>Phase 2</th>
<th>Phase 1</th>
<th>Pre Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSL Biotherapies</td>
<td>CSL Biotherapies</td>
<td>Sanofi Pasteur</td>
<td>Sanofi Pasteur</td>
</tr>
<tr>
<td>MVA Based</td>
<td>MVA Based</td>
<td>H1N1 Inactivated</td>
<td>H1N1 Inactivated</td>
</tr>
<tr>
<td>DNA / Vaxfectin</td>
<td>DNA / Vaxfectin</td>
<td>WIV</td>
<td>WIV</td>
</tr>
</tbody>
</table>

Egg-based inactivated

- **Egg-based inactivated**
 - H1N1 post DNA vaccine
 - H1N1 split w/ APO4
 - H1N1 split w/ APO4

Cell-culture inactivated

- **Cell-culture inactivated**
 - Cell-culture & split
 - Cell-culture & split

LAIV

- **LAIV**
 - LAIV
 - LAIV

Recombinant (VLPs)

- **Recombinant (VLPs)**
 - VLP / HA
 - VLP / HA

Universal

- **Universal**
 - NYU / MSSM
 - NYU / MSSM

Vectors

- **Vectors**
 - MVA Based
 - MVA Based

DNA

- **DNA**
 - DNA
 - DNA

Updated: 03/13/2011
Advanced Development Pipeline

Balance risk and time requirements

<table>
<thead>
<tr>
<th>TIME</th>
<th>3-7 yr</th>
<th>0.5-2 yr</th>
<th>1-2 yr</th>
<th>2-3.5 yr</th>
<th>2.5-4 yr</th>
<th>1-2 yrs</th>
</tr>
</thead>
</table>

PHASES

- **Discovery**
- **Preclinical Development**
- **Phase I**
- **Phase II**
- **Phase III**
- **Licensure**
- **Production & Delivery**

TRLs

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9

PRODUCT PIPELINE

<table>
<thead>
<tr>
<th>1-3%</th>
<th>5-17%</th>
<th>10-25%</th>
<th>18-35%</th>
<th>45-70%</th>
<th>90%</th>
</tr>
</thead>
</table>

Risk mitigation strategies are required to manage the inherently risky drug development process

* Source: PRTM & Industry Data
Risk mitigation strategies are required to manage the inherently risky drug development process.

* Source: PRTM & Industry Data

Hypothetical Scenario Starting Points

Influenza vaccine capability starting point

• Egg based inactivated influenza vaccine production:
 — Technology transfer partners and path clear
 — Alternative products include endemic diseases in many developing countries – e.g. yellow fever, measles, rabies

Non-influenza vaccine capability starting point

• Microbial based vaccine production:
 — Few advanced microbial influenza candidates
 — Licensing agreements uncertain
No Influenza Vaccine
Microbial Based Starting Point

1. Monitor development of microbial-based influenza vaccine technology and evaluate public health priorities
2. Develop a contingency plans for long development timelines for microbial-based influenza vaccine candidates

1. Monitor development of insect cell, VLP-based influenza vaccine technology and evaluate public health priorities
2. Contract A&E firm to develop conceptual designs for retrofitting fermentation suite
3. Conduct resource requirements assessment
4. Identify technology transfer opportunities and commence discussions

1. Contract A&E firm to develop conceptual designs for green-field construction of egg-based facility
2. Conduct resource requirements assessment
3. Explore opportunities for leveraging egg-based capabilities

1. Identify technology transfer opportunities and commence discussions
2. Contract A&E firm to develop conceptual designs for retrofitting fermentation suite
3. Conduct resource requirements assessment
Potential Multiproduct Vaccine Manufacturing Scenarios for Microbial Starting Point

Manufacturing Scenarios are developed based on:
1. Hypothetical planned (and potential) capabilities*
 - “Planned” refers to vaccines intended to produce
 - “Potential” refers to vaccines which Case Study #1 has interest in producing
2. The regional vaccines of interest
3. Vaccines compatible with current (and planned) platforms and vaccines of interest (based on 1 and 2 above)

Planned (and Potential) Capabilities*

Typical Developing Country Immunization Schedule
- BCG
- DTaP-Hib-IPV
- HepB
- Influenza (high risk pop.)
- Measles
- OPV
- Pneumococcal
- Rotavirus
- Td
- TT

Vaccines of Interest
- GAVI
 - DTP-Hib-HepB
 - Hib
 - HepB
 - Measles
 - Meningitis A
 - Pneumococcal
 - Rotavirus
 - Yellow Fever
- GAVI (planned rollout)
 - HPV
 - JE
 - Rubella
 - Typhim Vi

Vaccines for Multiproduct Manufacturing Consideration
- Diphtheria
- HepB
- Measles
- Meningitis A
- Pertussis
- Pneumococcal
- Rubella
- TB
- Td
- Typhim Vi

Notes:
1. technology platform to manufacture influenza vaccine to be determined
2. Top six most demanded vaccines

Scenario 1
Mammalian Cell LAIV + Mammalian Cell sIPV

Scenario 2
Mammalian Cell IIV + Mammalian Cell sIPV

Scenario 3
New product + Microbial-based (rProtein) Influenza

Scenario 4
Egg-based IIV + YF + Measles

Scenario 5
Influenza Insect-Cell VLP + HPV Insect-cell VLP
Egg-based Influenza Vaccine Starting Point

Egg-based Strategy

1. Characterize in-country / in-region market demands for non-influenza vaccines
2. Identify technology transfer opportunities and commence discussions
3. Conduct resource requirements assessment

As-Is

- **Egg-based Capability**
 - Pilot Scale
 - Commercial Scale
 - Emerging Technology Strategy
 - Insect
 - VLP, rHA
 - HPV

Egg Supplier

Emerging Technology Strategy

- **Egg-based Strategy**
 - IIV/LAIV
 - YF
 - Measles

Egg-based Strategy

1. Characterize in-country / in-region market demands for non-influenza vaccines
2. Identify technology transfer opportunities and commence discussions
3. Conduct resource requirements assessment
4. Contract A&E firm to develop conceptual designs for facility expansion to house additional eggs
5. Conduct regional market analysis for eggs for influenza vaccine manufacture

Emerging Technology Strategy

1. Characterize in-country / in-region market demands for non-influenza vaccines
2. Identify technology transfer opportunities and commence discussions
3. Contract A&E firm to develop conceptual designs for retrofitting inoculation suite
4. Conduct resource requirements assessment
Potential Multiproduct Vaccine Manufacturing Scenarios for Egg-based Influenza Vaccine Facility

Manufacturing Scenarios are developed based on:
1. Hypothetical current (and potential) capabilities*
2. The vaccines of regional interest
3. Vaccines compatible with current (and planned) platforms and vaccines of interest (based on 1 and 2 above)

*Top 6 demanded vaccines

Creative Sustainability Opportunities for Egg-based Operations: Beyond Vaccine Products

Egg-based Influenza Vx Operations

- Secondary egg-base products
 - Phospholipid (purified from egg yolk) as carriers for lipophilic drugs
 - Liposomes for drug delivery
- Supplier of Eggs
- Other Vaccines
 - Measles
 - Mumps
 - MVA / MVA Vectors
 - Yellow Fever
- Veterinary Vx’s

• Veterinary vaccines are out of scope for the current project

Source:
1http://www.phospholipid.jp/phospholipid_2-1.html
Ongoing Areas of Assessment

Other Key Considerations for Sustainability

This technology feasibility study provides a foundation for a comprehensive sustainability analysis with a long-term perspective. Additional considerations should be given to other key elements:

- Economics and resource requirements
- Market demand
- Public health and industrial policies
- IP / tech transfer

Assessment of sustainability feasibility should also explore alternative operating models (e.g., ‘hub-and-spoke’, partnerships with large pharma) that may offer more efficient and effective access for developing countries to influenza vaccines.
Conclusions

• Long term sustainability:
 – Egg based production may offer limited future expansion capabilities to new vaccine markets
 • Adapting to new technologies will be challenging
 – Microbial production has an expanding set of possible ‘sustaining’ products

• Pandemic influenza preparedness
 – Microbial production has higher technology risks for pandemic influenza vaccines
 – Greenfield facility construction is not necessary where
 • Egg based products are currently manufactured
 • High risk and long time-lines to pandemic preparedness are acceptable (e.g. non-egg based systems)
 – Near term preparedness requires greenfield or significant facility retrofitting where egg-based products are not currently manufactured.

• Any decision requires a careful assessment of needs, risks and resources.