Review of estimates of the global burden of injury and illness due to occupational exposures

Timothy Driscoll, M.B. B.S., Ph.D.1,2, Jukka Takala, Ph.D.3, Kyle Steenland, Ph.D.4, Carlos Corvalan, Ph.D.5, Marilyn Fingerhut, Ph.D.6.

1School of Public Health, University of Sydney, NSW 2006Australia, 2ELMATOM Pty Ltd, Sydney, Australia, 3ILO, InFocus Programme SafeWork, International Labour Office, ILO, CH-1211 Geneva 22, Switzerland, 4Rollins School of Public Health, Emory University, Atlanta, Georgia, U.S.A., 5Occupational and Environmental Health Unit, Protection of the Human Environment, World Health Organization, Geneva, Switzerland, 6National Institute for Occupational Safety and Health, Washington, D.C., U.S.A.

INTRODUCTION
Estimates of health burden at a population level, whether using a state, national or global focus, have several important potential benefits. They attract the attention of policy makers and the community by showing the size of the problem. They also provide guidance to policy makers on how to expend limited resources by identifying the major disorders and the exposures resulting in the largest burden.

Over the last decade there has been much research focussed on estimating the global burden of ill health due to various health disorders and due to specific exposures [Crowcroft et al., 2003; Ezzati et al., 2004; Ezzati et al., 2002; Leigh et al., 1996; Murray and Lopez, 1996; Murray and Lopez, 1997; Takala, 1999; Takala, 2002]. Some of this work has included exposures and outcomes related to work activity. The estimated burden due to work has varied considerably between studies, raising concerns regarding which estimate is the most reliable and/or appropriate to use, and the reasons for the variation. The Comparative Risk Assessment (CRA) project of the World Health Organization (WHO), considered in detail in other papers in this series, provides the most recent of these estimates, although it explicitly excluded some important occupationally related conditions [Ezzati et al., 2004; Ezzati et al., 2002; Nelson et al., 2005]. This paper considers the role these estimates play in global health and safety, the issues and general principles associated with developing such estimates, and the differences and similarities of the methodologies used in the main approaches used to date. The aim is to put the CRA estimates into context, identify the most reliable and appropriate estimate, and to make recommendations regarding future work. The focus of this paper is on deaths, for which most information is available, but the principles are relevant to non-fatal disorders. The paper begins with a consideration of some general issues that affect estimates of burden due to work and the approaches taken to develop the various estimates. Next, the methodology and results for each of the main estimates are briefly described, compared and contrasted. Finally, suggestions for further work are provided.

PROBLEMS IN ESTIMATING OCCUPATIONAL BURDEN
Most cases of work-related disease or injury cannot be easily counted. Reasons for this include definitional, identification and recording issues.

The definition of work-relatedness
Work-relatedness is not always a straightforward concept. A reasonable general definition of work-relatedness is an injury or disease that results from a work exposure. This definition requires an assessment of what is meant by work and work exposure, and the required connection between exposure and the disease or injury of interest.

Keywords
occupation, work, deaths, DALYs, global burden
It is commonly clear whether or not someone is employed, but persons in informal work arrangements (e.g. family members on a family-owned farm, children helping out in a family shop, and “unemployed” persons collecting discarded cans for recycling), which are very common in developing countries, must also be considered to be working. The person doesn’t necessarily need to be at work at the time of the harmful exposure. Nor does the disorder need to become manifest while the person is working – e.g. many diseases of long latency will not present with symptoms for many years or decades after the causative exposure, by which time the persons may have retired or had several other jobs. The person doesn’t even need to be employed, because persons who are not working (bystanders) can also suffer ill-health as a result of work exposures. Distinctions have sometimes been made on the basis of the degree of contribution of work, or whether work “caused” the disorder or just exacerbated it. The key feature of a work-related disorder is that work exposures lead directly to the development of the condition, or to the significant exacerbation of a pre-existing condition.

The context of the work activity is commonly used as the basis for inclusion or exclusion of cases, especially injury cases. For example, work-related injuries of workers are commonly separated into three groups - injuries that occur in traffic incidents on public roads in the course of work ("work-road injuries"), other injuries that occur in the course of work ("workplace injuries"), and injuries that occur whilst travelling to or from work ("commuting injuries"). Workplace and work-road injuries are commonly combined into a single measure of work-related injuries of workers ("working injuries").

Recording cases of work-related disorders

Direct information on the number and type of cases of work-related disorders usually comes from government agencies. In developed countries, the most reliable sources for work-related injury are usually workers’ compensation databases. The strengths of such databases include that they usually have standardized systems for confirming cases and recording case information. The systems also have several important weaknesses – they usually only cover employees, they may exclude particular industry sectors explicitly (e.g. military personnel) or implicitly (e.g. a large number of agricultural workers are self-employed) and, most importantly, they cover disease very poorly because the connection between occupational exposure and disease at an individual level is so hard to establish [Macaskill and Driscoll, 1998].

Other sources of direct information on case numbers are occupational disease registers. These appear to have had some success for specific disorders in the United Kingdom [McDonald et al., 2000] and Australia [Leigh and Driscoll, 2003], but in general they function primarily as sentinel event systems or provide a broad indication of numbers and trends, and only cover a very limited group of disorders.

The aforementioned shortcomings are relevant to data systems in developed countries. The situation for developing countries is typically much worse, with fewer resources available to establish and operate systems, and less-established networks for identifying and reporting cases.

APPROACHES TO ESTIMATING THE NUMBER OF WORK-RELATED CASES

This section considers various approaches that have been used to estimate the burden of work-related disorders, with emphasis on the number of cases, as opposed to the total burden as measured by Disability Adjusted Life Years (DALYs). DALYs are “disability-adjusted life years”, a weighted estimate of the number of years lived with disability. The weighting refers to the severity of the disability. More detail is provided in the introductory paper to this series [Nelson et al., 2005] and elsewhere [Ezzati et al., 2004; Murray and Acharya, 1997].

INJURY DEATHS

Counting injury cases should, in theory, be straightforward. The connection between the work exposure and the injury is usually clear and there is no latency involved (this connection is less obvious for injury disorders that develop after cumulative exposure, such as back injuries related to vibration in powered equipment, and upper limb injuries related to repetitive movements). Routine data systems in most developed countries and some developing countries probably give reasonable coverage of severe and fatal injuries for the employees and industry sectors that they do cover (although some under-enumeration can be expected, even for deaths [Concha-Barrientos et al., 2004; Driscoll et al., 2003]). Cases recorded by available data systems and reported to the World Health Organization or the International Labour Organization have been used as the basis for estimating the global number of work-related injury and disease cases.

The main problem arises because of the lack of accurate data for many countries, with the resulting requirement to extrapolate from subsets of the workforce or from other countries (considered below). There are also differences in inclusion criteria of injury cases, with some studies or data sources including work-road deaths, some including commuting deaths, and some combining disease data and injury data, and the extent to which these various inclusions occur is often not clear.

Extrapolation of rates between sections of the workforce

A key problem with relying on reported cases in routine data systems is that they only relate to the proportion of the workforce covered by the data system. However, if the number of workers covered by the system is known, reasonably valid injury rates can be determined for these workers. The number of injuries for the entire workforce can then be estimated by applying the calculated rates for the included workers to the total workforce. This approach has been used in several estimates, and is based on the assumption that the injury rate in the included workforce is similar to the injury rate in the workforce that is not included. In most situations, there will be little or no information to confirm or refute this assumption. However, several factors suggest that rates from routine data sources probably underestimate, and are unlikely to overestimate, injury rates in workforces not so covered. Many people in occupations or industries with high rates of serious and fatal
injury (e.g. forestry, fishing, agriculture and transport [Driscoll et al., 2001; Feyer et al., 2001; Stout et al., 1996]) are self-employed persons who are usually not covered by the routine compensation systems. Even if the routine system is not based on workers’ compensation, these industries with high injury rates are commonly not well covered by data systems due to poor reporting and differing system priorities and focus. The effect of this can be decreased to some extent by extrapolating rates on an industry-specific basis, but this is not always possible and may still result in underestimation. In addition, many workers, especially in less-developed countries, are employed in informal or precarious capacities that are inconsistently included in official labour force estimates [Giuffrida et al., 2002]. Therefore, extrapolation of known rates for part of the workforce to the whole workforce is a reasonable approach, but one which is likely to result in an underestimation. The same general issues regarding extrapolation of rates apply to diseases, but to a greater extent, because there is more uncertainty surrounding the known rates, and probably more variation in the causative exposures.

Extrapolation of rates between countries

The same extrapolation approach can be used to estimate work-related injury and disease numbers for countries or regions (a “region” in this context describes a group of countries in the same geographical area) that do not have valid data, by using rates from other countries. However, the concerns just mentioned for extrapolation within a country are magnified when rates from one country or region are extrapolated to the population of another country or region. Variations in employment patterns between countries can be expected. This means that even if the rates within a given at-risk group (e.g. industry or occupation) are the same in the two countries, extrapolation can lead to considerably biased estimates of the overall rates of injury or disease. This makes extrapolating rates on an industry-specific basis particularly important, if possible.

DISEASE DEATHS

Disease deaths present a major theoretical problem, because they are multi-factorial, making it impossible to know if an individual case is attributable to occupation or not. This necessitates an epidemiologic approach, specifically the Population Attributable Risk (PAR) approach. The PAR is the proportion (often expressed as a percentage) of all cases of a particular condition that is due to a particular exposure (or group of exposures). By applying this proportion to the total number of deaths from a particular condition (obtained from the routine health data systems that in most countries reasonably reliably record the cause of death for all persons), the number of deaths from that condition due to that exposure can be estimated. The PAR is dependent only on the relative risk of developing the condition due to the exposure, and the proportion of the population that has that exposure. Relative risk information is commonly available only from a limited number of epidemiological studies, for exposed versus non-exposed groups, in a limited number of (usually) developed countries. These relative risks must be considered universal in order to make any global estimates, although they are in fact specific to the exposure levels in the studies from they are derived. Biological differences and co-exposures may influence the absolute exposure-risk relationship between populations, and differing distribution of co-exposures may mean a relative risk measured in a workforce in one circumstance may not be applicable to a different workforce in a different country or region. However, it is reasonable to assume that in many circumstances the relative risk is essentially constant between populations that have similar exposures. If information on a specific country’s exposure prevalence is available, then a PAR specific to that country can be estimated. Since the PAR is dependent on the exposure characteristics, the PAR for a particular risk factor may vary considerably between different regions, countries and time periods.

The PAR enables one to estimate the proportion of cases of disease which would not have occurred in the absence of exposure, based on a counter-factual assumption about what the rate in the exposed would have been had that group not be exposed. The advantages of this approach include that it can take into account local exposures and workforce distribution, and local general health outcome (usually deaths) data. Deaths data is most commonly used because it is likely to be the most reliable local health data. However, there are several disadvantages. The relative risk is dependent on the exposure characteristics of the workforce(s) in which it is measured. These characteristics are often not known to any level of detail. Also, the detailed exposure characteristics of the local population are even less likely to be known. Typically, only general workforce data, based on industry and sometimes occupation, are available.

Exposure prevalence can sometimes be estimated by applying job-exposure information from one area to general employment data from another. For diseases with long latencies, exposure prevalence should be based on persons who have ever been exposed, rather than only those who are currently exposed. The CRA project applied a factor of four to the currently exposed prevalence to derive an estimate of the persons ever exposed for diseases of long latency (see [Nelson et al., 2005]). However, this factor itself was based on several assumptions, particularly related to workforce turnover and disease latency.

An additional problem is that information on exposure intensity is often not available and, if required, will have to be extrapolated from a third data source. Exposure intensity is mainly of importance when estimating future burden (for which exposure intensities would usually be expected to be lower) or when making estimates for countries with widely different exposure intensities and for which different, exposure-specific, relative risks will be used (although, as mentioned earlier, in practice these are often not available).

The end result of the PAR approach may then be the application of a relative risk obtained from one exposure circumstance to the prevalence of a different exposure circumstance.
Morbidity versus mortality
Most global estimates have relied on mortality data rather than morbidity data, since the latter are often lacking. However, the use of morbidity data is important, because a number of occupational injuries and diseases are not fatal. The PAR approach can still be used for multi-factorial diseases to estimate the number of incident (morbidity) cases attributable to occupation rather than the number of deaths, but this first requires an estimation of the total number of incident cases. In the absence of existing data on incidence, this can be done using case-fatality ratios. It is difficult to compare the relative burden of non-fatal incident occupational cases across diseases because the PAR and the number of cases for each disease will not really enable a meaningful comparison.

DALYs are an attempt to solve this comparison problem. DALYs are a weighted estimate of the number of years lived with disability. The weighting refers to the severity of the disability. The DALY thus represents the gap between the current situation, and an ideal situation where everyone achieves an agreed standard life expectancy in perfect health. More detail is provided in the introductory paper to this series [Nelson et al., 2005] and elsewhere [Ezzati et al., 2004; Murray and Acharya, 1997].

SPECIFIC STUDIES PRODUCING NATIONAL ESTIMATES OF BURDEN DUE TO WORK
National estimates of work-related injury and/or disease have been attempted in many developed countries, including Australia, Canada, Finland, New Zealand, and the United States. Most have counted the number of injury deaths using Coroner’s data and used an attributable risk approach to estimate the number of disease deaths. In terms of injury, all included workplace deaths, most included work-road deaths and some included commuting deaths. The distinction between disorders caused by occupational exposures, as opposed to disorders exacerbated by them, was rarely addressed explicitly. The majority of these studies are summarized in Table 1.

Although the absolute numbers are not of relevance to a global estimation, it is of interest to note that work-related disease deaths as a percentage of all work-related deaths was similar in all the estimates, ranging from 83% to 96%. The commuting data are not presented in Table 1, but for those countries where these data were available, commuting deaths comprised 14% (New Zealand - [Driscoll et al., 2004; Feyer et al., 2001; Langley et al., 2003]) to 26% (Australia - [Driscoll et al., 2001]) of all injury deaths.

SPECIFIC STUDIES PRODUCING GLOBAL ESTIMATES
This section summarises the methodology and results of the main global estimates of work-related injury and disease published in the last decade. Tables 2 to 5 provide comparisons of the approaches used and the results reported.

Table 1: Summary of work-related injury and disease death estimates from the main studies providing national estimates

<table>
<thead>
<tr>
<th>Country</th>
<th>Years covered</th>
<th>Injuries¹</th>
<th>Disease¹</th>
<th>Total¹</th>
<th>% disease²</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1982-1984</td>
<td>426</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>[Harrison et al., 1989]</td>
</tr>
<tr>
<td>Australia</td>
<td>1989-1992</td>
<td>447</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>[Driscoll et al., 2001]</td>
</tr>
<tr>
<td>Australia</td>
<td>1992</td>
<td>-</td>
<td>2,290</td>
<td>-</td>
<td>-</td>
<td>[Morrell et al., 1998]</td>
</tr>
<tr>
<td>Australia</td>
<td>1992</td>
<td>393</td>
<td>2,290</td>
<td>2,683</td>
<td>85</td>
<td>Combining [Driscoll et al., 2001] and [Morrell et al., 1998]</td>
</tr>
<tr>
<td>Canada</td>
<td>1989</td>
<td>869</td>
<td>4,195</td>
<td>5,064</td>
<td>83</td>
<td>[Kraut, 1994]</td>
</tr>
<tr>
<td>Finland</td>
<td>1996</td>
<td>82</td>
<td>1,728</td>
<td>1,810</td>
<td>96</td>
<td>[Nurminen and Karjalainen, 2001]</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1999</td>
<td>91</td>
<td>886</td>
<td>977</td>
<td>91</td>
<td>[Driscoll et al., 2004]</td>
</tr>
<tr>
<td>United States</td>
<td>1992</td>
<td>6,529</td>
<td>60,290</td>
<td>66,819</td>
<td>90</td>
<td>[Leigh et al., 1997]</td>
</tr>
<tr>
<td>United States</td>
<td>1997</td>
<td>6,238</td>
<td>49,016</td>
<td>55,254</td>
<td>89</td>
<td>[Steenland et al., 2003]</td>
</tr>
</tbody>
</table>

1: Deaths per year.
2: Number of work-related disease deaths as a percentage of total work-related deaths.
Table 2: Summary of methodology of the main studies providing global estimates of work-related injury and/or disease

<table>
<thead>
<tr>
<th>Reference</th>
<th>Years covered</th>
<th>Source of outcome data</th>
<th>Approach</th>
<th>Age-range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Leigh et al., 1996; Leigh et al., 1999]</td>
<td>Latest available data up to 1994; centred on 1990</td>
<td>Injury: Compulsory accident reporting and workers' compensation schemes. Disease: Specific reports or studies. Denominator: ILO and World Bank</td>
<td>Injury: Counts where reported; extrapolation of Australian and Canadian rates Disease: Number/rates where available; extrapolation of Australian and Canadian rates</td>
<td>No specific range, but probably 15+</td>
<td>No allowance for combined injury and disease reporting</td>
</tr>
<tr>
<td>[Takala, 1999; Takala, 2000]</td>
<td>1996</td>
<td>Injury: Accident reporting schemes in each country Disease: based on denominator data Denominator: ILO, United Nations, GBD</td>
<td>Injury: Reported rates, applied to total working population. Disease: Extrapolation of Finnish data showing ratio of fatal “occupational accidents” to fatal “occupational diseases” of 51:49.</td>
<td></td>
<td>“Work-related diseases” were seen as additional to “occupational diseases”, with the results based on a Danish estimate of 10% of these deaths being work-related.</td>
</tr>
<tr>
<td>[Hamalainen et al., 2004; Takala, 2002]</td>
<td>2000</td>
<td>Global Burden of Disease 1996</td>
<td>Injury: Reported rates, applied to total working population. Disease: PARs from Finland, applied to age-sex groups</td>
<td>"Working age"</td>
<td></td>
</tr>
<tr>
<td>CRA [Concha-Barrientos et al., 2004; Nelson et al., 2005]</td>
<td>2000</td>
<td>Global Burden of Disease 2000</td>
<td>Injury: Direct application of rates from countries with available data and extrapolation of these to other countries that did not have adequate data. Disease: PARs based on relative risks from literature; direct application of absolute risks from literature.</td>
<td>15 years to 85 years</td>
<td>Only included a limited number of diseases</td>
</tr>
</tbody>
</table>

1: 15-70 years for communicable disease and digestive systems disease; 15-75 years for circulatory system disease; 15 years and above for other diseases.
Table 3: Summary of work-related injury death estimates from the main studies providing global estimates

<table>
<thead>
<tr>
<th>Reference</th>
<th>Working</th>
<th>Commuting</th>
<th>Total</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Leigh et al., 1996; Leigh et al., 1999]</td>
<td>141,813</td>
<td>-</td>
<td>-</td>
<td>Probably includes some, but not all, commuting deaths</td>
</tr>
<tr>
<td>[Takala, 1999; Takala, 2000]</td>
<td>334,870</td>
<td>158,000</td>
<td>493,000</td>
<td>Commuting data estimated on the basis of ratios of working to commuting deaths in Finland.</td>
</tr>
<tr>
<td>[Hamalainen et al., 2004; Takala, 2002]</td>
<td>354,753</td>
<td>-</td>
<td>-</td>
<td>Probably includes a small number of commuting deaths</td>
</tr>
<tr>
<td>CRA [Concha-Barrientos et al., 2004; Nelson et al., 2005]</td>
<td>312,000</td>
<td>-</td>
<td>-</td>
<td>Excludes commuting</td>
</tr>
</tbody>
</table>
Table 4: Summary of work-related disease death estimates from main studies providing global estimates

<table>
<thead>
<tr>
<th>Reference</th>
<th>Communicable</th>
<th>Malignancy</th>
<th>Respiratory</th>
<th>Circulatory</th>
<th>Neuropsych</th>
<th>Digestive</th>
<th>Genito-urinary</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Leigh et al., 1996; Leigh et al., 1999]¹</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>583,700 – 704,200</td>
</tr>
<tr>
<td>[Takala, 1999]²</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>325,000</td>
</tr>
<tr>
<td>[Takala, 1999]³</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>951,000</td>
</tr>
<tr>
<td>[Takala, 2000]</td>
<td>-</td>
<td>456,240</td>
<td>311,000</td>
<td>200,025</td>
<td>12,080</td>
<td>-</td>
<td>-</td>
<td>992,445</td>
</tr>
<tr>
<td>[Hamalainen et al., 2004; Takala, 2002]</td>
<td>320,471</td>
<td>609,678</td>
<td>146,175</td>
<td>519,255</td>
<td>20,341</td>
<td>22,566</td>
<td>8,478</td>
<td>1,646,965</td>
</tr>
<tr>
<td>CRA [Concha-Barrientos et al., 2004; Nelson et al., 2005]</td>
<td>-</td>
<td>152,000</td>
<td>386,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>538,000</td>
</tr>
</tbody>
</table>

1: There was no information on deaths from specific diseases.
2: Based on the injury estimate, and extrapolation of Finnish data showing ratio of fatal "occupational accidents" to fatal "occupational diseases" of 51:49.
3: Based on the same estimate identified in footnote 2, plus an estimate for "work-related" disease deaths (defined by the author as "diseases that are only partly work-related") from Denmark of 10% of all deaths from the particular conditions.
Table 5: Summary of total work-related death estimates from the main studies providing global estimates

<table>
<thead>
<tr>
<th>Reference</th>
<th>Injury</th>
<th>Disease</th>
<th>Total</th>
<th>% disease¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Murray and Lopez, 1996]</td>
<td>1,129,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Takala, 1999]²</td>
<td>334,870</td>
<td>325,000</td>
<td>659,870</td>
<td>49</td>
</tr>
<tr>
<td>[Takala, 1999]³</td>
<td>334,870</td>
<td>951,000</td>
<td>1,285,870</td>
<td>74</td>
</tr>
<tr>
<td>[Takala, 2000]</td>
<td>334,870</td>
<td>992,445</td>
<td>1,327,315</td>
<td>75</td>
</tr>
<tr>
<td>[Hamalainen et al., 2004; Takala, 2002]</td>
<td>354,753</td>
<td>1,646,965</td>
<td>2,001,718</td>
<td>82</td>
</tr>
<tr>
<td>CRA [Concha-Barrientos et al., 2004; Nelson et al., 2005]</td>
<td>312,000</td>
<td>538,000</td>
<td>850,000</td>
<td>63</td>
</tr>
</tbody>
</table>

1: Number of work-related disease deaths as a percentage of total work-related deaths.
2: Based on the injury estimate, and extrapolation of Finnish data showing ratio of fatal “occupational accidents” to fatal “occupational diseases” of 51:49. If estimated commuting deaths are included, the injury total is 463,000, and the injury and disease total 818,000.
3: Based on the same estimate identified in footnote 2, plus an estimate for “work-related” disease deaths (defined by the author as “diseases that are only partly work-related”) from Denmark of 10% of all deaths from the particular conditions. If estimated commuting deaths are included, the injury total is 463,000, and the injury and disease total 1,444,000.
Preliminary World Health Organization estimates of occupational burden (Leigh et al., 1996; 1999)

In preparation for the original WHO global burden project to estimate burden of disease and injury due to many factors, Leigh and colleagues estimated the global burden of fatal injury and disease using data published up to 1994. They estimated there were 141,813 injury deaths and 583,700 to 704,200 disease deaths each year (centred on 1990). For injuries, they used data on compensable fatal injury deaths as reported from a limited group of countries. Where data were not available, rates from similar countries were applied to available employment data. This extrapolation was done at a national level, rather than using industry-specific rates. A different approach was used for India, for which a local survey and an extrapolation using Malaysian rates were used to produce the final estimate. For occupational disease, information was obtained from single reports or studies. Rates were estimated for countries without adequate data on occupational disease by applying overall disease rates, from appropriate national or averaged data of countries or groups of countries closest in geography and economic development, to employment data from the relevant country. A range rather than a single number was estimated for some countries.

Adjusted World Health Organization estimates of occupational burden (Murray and Lopez., 1996)

The results of the Leigh and co-workers’ study were included in the formal Global Burden of Disease project. Adjustments were made to take into account differences in methodology in the approach used by Leigh and coworkers compared to the standard Global Burden of Disease methodology, producing a final estimate of 1,129,000 deaths from injury and disease. The authors stated that this probably underestimated the impact of occupation for most developing countries [Murray and Lopez, 1996].

International Labour Organization (ILO) global estimates of fatal occupational accidents (Takala, 1999)

Takala in 1999 (similar data were presented in a published 1998 conference presentation - [Takala, 1999]) estimated 335,000 deaths from “occupational accidents” in 1996. This estimate was obtained by applying reported fatal injury rates for each country to the total employed labour force for that country (as described earlier). Where rates were not available for a country, rates from “similar or comparable” countries were applied to employment data for the particular country. National deaths rates were applied rather than industry-specific rates. Deaths data came from various years between 1985 and 1995. Data from some countries included reported/recorded commuting deaths and/or disease deaths, but most did not. The extent to which work-road fatalities were included in the data is unclear. Another 158,000 commuting deaths were estimated to have occurred, based on a ratio of workplace and work-road deaths to commuting deaths of 68% : 32% from a Finnish study.

The number of disease deaths was indirectly estimated on the basis of the number of injuries. Finnish data provided a ratio of fatal injuries to fatal disease of 51% : 49%. Using this result and the above estimate of 335,000 injury deaths, Takala estimated there were 325,000 disease deaths. This gave a total of 660,000 work-related deaths due to workplace injury, work-road injury, and disease, or 818,000 if commuting injury is included. He also mentioned an estimate of an additional 626,000 deaths from “work-related” diseases (“defined as “only partially work-related”) based on 10% of all such conditions. This would give a final estimate of 1,286,000 working injury and disease deaths, or 1,444,000 deaths if commuting is included [Takala, 1999].

Initial International Labour Organization global estimates of occupational deaths due to injury and disease (Takala, 2000)

In 2000, Takala used the same estimates of working injury deaths as in his 1999 study, but used an attributable risk approach to estimate disease deaths. Using the same PARs as a 1997 United States study [Leigh et al., 1997] and applying these to the world population of working age, Takala estimated 992,445 deaths from occupational disease [Takala, 2000].

Recent International Labour Organization global estimates of occupational deaths due to injury and disease (Hamalainen et al., 2004; Takala 2002)

In his most recent estimates, Takala (also working with Hamalainen and other colleagues) again used the attributable risk approach to estimate occupational disease deaths, but this time applied on a regional rather than a global basis. Attributable fractions were taken from the Finnish study by Nurminen and Karjalainen [Nurminen and Karjalainen, 2001], with some minor modifications to take account of particular conditions and regions. These PARs were applied to overall disease death estimates by age and sex for the year 2000 from the Global Burden of Disease project [Murray and Lopez, 1996]. This resulted in an estimate of 1.9 million deaths from occupational disease. The main reason this estimate was so much higher than previous disease estimates was that it included communicable diseases such as schistosomiasis, malaria and viral and bacterial infections (320,000 estimated deaths), two and a half times more cardiovascular disease deaths and 50% more cancer deaths, although only half as many respiratory deaths were included compared to the estimates in Takala's 2000 estimates [Takala, 2000]. There were also a higher number of cancers because older workers were included and some of the PARs were different to those used previously.

The paper included an estimate for the number of injury deaths (355,000). This estimate was based on data on the number of injury deaths obtained directly from countries where available. Rates from selected countries were used for each region, and account taken of under-inclusion of sections of the workforce in official statistics from which the original data were obtained.

Lower and upper limits for the overall estimates were provided, but the range was fairly small for all diseases except communicable disease. The final range of the estimate was 1,920,086 to 2,328,934 deaths [Hamalainen et al., 2004; Takala, 2002].
World Health Organization Comparative Risk Assessment project to estimate global burden of disease due to many risk factors (Concha-Barrientos et al., 2004; Nelson et al., 2005)

The most recent estimate of global occupational deaths comes from the CRA project. This work was conducted as part of the World Health Organization’s Global Burden of Disease project, in which comparable global risk and exposure data were put into a common model to estimate the burden of ill health arising from 26 risk factors grouped into seven major categories [Ezzati et al., 2004]. Five occupational risk factors were included - all other occupational risks had to be excluded due to inadequate available data. The specific occupational risk factors included were occupational carcinogens, airborne exposures, noise, ergonomic stressors and exposures leading to injury. The occupational results are summarized in the overview paper [Nelson et al., 2005] and reported in more detail in the occupational chapter in the WHO CRA publication [Concha-Barrientos et al., 2004] and individual articles included in this issue. Only occupational carcinogens, airborne exposures and risk factors for injury contributed to the estimated annual 850,000 deaths from occupational exposures. Injuries (312,000) were estimated by using rates from countries with available data and extrapolating these to other countries that did not have adequate data. The rates included work-road deaths but not commuting deaths. Most disease deaths were estimated using a PAR approach. Relative risk was estimated from relevant epidemiological studies, and exposure prevalence and intensity were estimated from a combination of national or regional employment data and exposure data extrapolated from specific countries or regions. Deaths from mesothelioma, asbestosis, silicosis and coal workers’ pneumoconiosis were estimated by applying absolute mortality rates from the literature to estimates of cumulative exposure.

COMPARISON OF ESTIMATES

Injury

Occupational injury estimates vary from about 140,000 [Leigh et al., 1996; Leigh et al., 1999] to nearly 500,000 [Takala, 1999]. If commuting deaths are excluded (to the extent the data allow), the range is from 140,000 [Leigh et al., 1996; Leigh et al., 1999] to 355,000 [Hamalainen et al., 2004; Takala, 2002]. The methodology used to derive all of the larger estimates was similar and appears sounder than the lower estimates because it was based more directly on national rates. The main problems with the estimates are a widespread lack of data, the “contamination” of injury data by the inclusion of some diseases cases in some countries, and the inconsistent inclusion of homicides, suicides and commuting deaths. The WHO CRA estimate of 312,000 is close to the other larger estimates. The paper suggests that this figure under-estimates the true number of deaths by about 80,000 deaths, because of undercounting in developing countries [Concha-Barrientos et al., 2004]. It is likely that additional underestimation arose from the more indirect approach that was used.

In summary, the best estimate of the annual number of fatal injury deaths of workers is about 350,000. This includes workplace and work-road deaths, but largely excludes commuting deaths, for which there are no soundly-based estimates. There are no global or regional estimates of bystander injury deaths.

Disease

Disease estimates vary from 325,000 [Takala, 1999; Takala, 1998] to 1.6 million [Hamalainen et al., 2004; Takala, 2002]. A variety of methodologies have been used because of the major shortcomings in available data, even in developed countries, for most exposure-disease relationships. The most recent estimate from Takala and colleagues [Hamalainen et al., 2004; Takala, 2002] seems the most comprehensive and the methodology on which it is based appears reasonable. The WHO CRA project probably used a better method for estimating disease deaths because it used region-specific attributable fractions, taking into account exposure prevalence and, to a limited extent, exposure intensity. However, these regional exposure estimates were partially based on non-regional data, and the CRA project only included a very limited number of conditions. In particular, communicable and circulatory diseases were excluded. The inclusion of only three malignancies (lung cancer, leukaemia and malignant mesothelioma) in the CRA project probably explains the vast difference between the CRA and the most recent other estimates.

In contrast, the recent estimate from Takala and colleagues for non-malignant respiratory disease [Hamalainen et al., 2004; Takala, 2002] was less than 50% that of the CRA, and also less than 50% of his previous estimate [Takala, 2000]. The difference presumably arises because of the different attributable fractions used - the earlier estimate of Takala was based on United States’ attributable fractions [Leigh et al., 1997], whereas the more recent estimates were based on Finnish attributable fractions [Nurminen and Karjalainen, 2001].

Taking into account the inclusions and exclusions and methodologies of the different studies considered above, the best estimate of the annual number of occupational disease deaths of workers is about 1.6 million, based on the most recent ILO study. There are no estimates at national, regional or global level of disease deaths of non-workers arising from occupational exposures.

Total deaths

Combining the injury and disease results, the best estimate of the annual number of deaths of workers arising from occupational exposures is about two million, comprised of about 350,000 injury deaths and about 1.65 million disease deaths. This estimate does not include injury deaths of commuters, and relates to the beginning of the 21st century (2000 to 2005). The CRA estimate of 850,000 deaths each year is a major underestimate of the total, as noted by the CRA authors due to exclusion of many occupational risk factors, but the CRA effort probably makes only a small underestimate for the limited range of occupational risk factors and outcomes that were included in the project. There are no estimates of total deaths of non-workers due to occupational exposures.
The number of work-related disease deaths as a proportion or percentage of all work-related deaths was considerably lower in the global estimates than in the country-specific estimates (Tables 1 and 4), with a range of 49% to 82% for global estimates, compared to 83% to 96% in national estimates. It is probably reasonable to accept the national estimates as being more accurate than the global estimates, given the larger data uncertainties involved at a global level. This suggests that the global analyses are either underestimating disease deaths or underestimating injury deaths, with the former more likely, and that the larger, more recent global estimates are more accurate than the earlier estimates.

DALYs

This comparison has not focused on DALYs because these are only available from the two studies related to the Global Burden of Disease project [Concha-Barrientos et al., 2004; Murray and Lopez, 1996; Murray and Lopez, 1997; Nelson et al., 2005]. The absolute number of DALYs is probably of less importance than the percentage of all DALYs due to occupational exposures. This was estimated to be 2.7% in 1990 [Murray and Lopez, 1996; Murray and Lopez, 1997] and in the CRA project to be about 1.7% in 2000. Note that these DALY estimates include non-fatal conditions, which have not been considered in the earlier discussion. The above analysis makes it clear that the CRA is a major under-estimate of the extent of work-related mortality because of the limitations in the number of risk factors and outcomes that could be included. The 1990 Global Burden of Disease study also appears to have been a significant under-estimate of the true burden of occupational injury and disease, based on the methodology used and the authors’ comments, as mentioned earlier. Although the analysis only considered mortality, it is very likely that morbidity is also under-estimated significantly. The above ‘best estimate’ of about two million deaths (not including commuters) each year from work-related injury and disease is approximately twice the 1990 Global Burden of Disease estimate of 1.1 million and more than twice the 2000 CRA estimate of 850,000. Therefore, the true extent of the global burden of disease resulting from occupational risk factors is likely to have been considerably more than 2.7% in 1990 and 1.7% in 2000, and probably should be increased at least by a factor of two. However, the true burden is difficult to assess.

SOURCES OF BIAS

These estimates are subject to many potential biases, involving exposure assessment, risk measures, outcome assessment and population at risk. All the significant relevant biases are likely to result in an under-estimation of injury and disease cases.

Where absolute measures of exposure are used in these estimates, developed countries are usually the primary source of exposure information for developing countries. However, for the same work task or process, exposures can be expected to be higher in developing countries than in developed countries. Therefore, this approach is likely to under-estimate exposures in developed countries, leading to an under-estimate of risk and hence to an underestimate of the resulting burden.

Measures of absolute risk for injury mostly came from data systems based on workers’ compensation claims or official reports of serious occupational incidents. Since these systems usually have limited coverage of many high-risk industries and occupations such as farming, fishing, forestry and transport, injury rates from these systems are likely to underestimate overall injury rates. There is inconsistent inclusion of work-related homicide cases, which should be included in any estimate of fatal work-related injury. Also, work-related suicide is sometimes included in compensation data, but uncommonly included in most estimates. Bystander cases are not included in any of the global estimates, presumably because of a lack of appropriate data. Information on bystander injury deaths is available from a limited number of national studies. The number of workplace bystander deaths was about one quarter of the number of workplace deaths of workers in Australia [Driscoll et al., 2001] and about 10% in New Zealand [Feyer et al., 2001]. In Australia the number of road bystander deaths (non-working persons killed in motor vehicle incidents on public roads in which the working vehicle was “at fault”) (477) was similar to the number of work-road deaths (543) [Mitchell et al., 2004]. This gives some idea of the scope of the problem of bystander injury. There is no information available on the extent of bystander disease.

The difficulty recognizing or substantiating an exposure-disease association almost certainly leads to gross underestimation of work-related disease cases by routine reporting systems. Use of an attributable risk methodology can overcome this problem to some extent. However, this requires knowledge of a general connection between a specific exposure and a specific outcome, exposure information, and risk data describing the exposure-risk relationship. One or more of these aspects are commonly not known, resulting in an underestimation of disease cases.

The population at risk is usually obtained from official labour sources. These often do not include workers in the informal sector, nor child workers. In addition, many estimates use an upper age limit for certain disorders. This may be appropriate for disorders with short latencies, such as most injuries and many communicable diseases, but it has also been used for some longer latency diseases, most notably circulatory disorders, and the appropriateness of this is arguable.

FURTHER WORK

It is important that estimates be as accurate as possible so that resources are most appropriately allocated. Competition between different health areas, each attempting to maximise the measured health burden in their area in order to attract maximal resources from a finite resource pool, can undermine the accuracy of individual estimates and comparison between health areas. This highlights the importance of comparisons based on similar assumptions and similar inclusion/exclusion criteria. The Global Burden of Disease project is an attempt to develop health burden estimates on such an equitable basis. However, such standardization can also restrict the methodologies available for analysis of a specific area,
serving to decrease rather than increase the validity of the resulting estimates. This was particularly evident in the CRA analysis for occupational exposures. The attributable risk approach was used for most exposures in the CRA and was applied well for the limited number of carcinogens and cancer types, and the limited number of atmospheric exposures and resulting respiratory conditions, that were included, but the overall disease estimates were much too low because so many exposures and outcomes had to be excluded. Missing or poor data was the major underlying reason for exclusion, but this was because of the need to use the standardized approach, which did not facilitate the use of other approaches that could have better dealt with such data problems.

Another reason why standardized approaches might not always be appropriate is that when there is such uncertainty in the data, there is value in developing estimates using a variety of methods and assumptions in an attempt to “triangulate” results. If the resulting estimates are similar, it becomes less likely that the same bias is affecting all estimates, so more confidence can be placed in the results. Conversely, if different approaches produce very different results, this indicates considerable problems with one or more of the approaches, providing a focus for examination of the potential biases, how they might be operating and how they might be overcome. Therefore, future work could usefully focus on the development of varying methodologies and assumptions to arrive at regional or global estimates.

In terms of the approaches used to date, improvements in injury estimates are likely to come from more country-specific outcome data; clearer delineation of the type of cases included (particularly by excluding disease cases, separately identifying commuting cases, including homicide cases and deciding whether to include or exclude suicide cases); better estimates of the true population at risk by including child workers and workers in the informal sector; and inclusion of bystanders.

Improvements in disease estimates will probably arise in the first instance from the use of better country or region-specific exposure data, allowing more appropriate PARs to be used, and improved relative risk estimates for cardiovascular, malignant, respiratory and communicable diseases. Estimates of bystander deaths would also be an appropriate, but methodologically difficult, inclusion.

This analysis has focused on deaths rather than DALYs. DALYs have the advantage of incorporating information on disability as well as death, and so aim to provide a more complete estimate of community burden [Murray and Acharya, 1997]. However, DALYs are not intuitive, are subject to subjectivity in the weightings and have some other shortcomings [Anand and Hanson, 1997]. Most importantly, some of the available studies included only deaths. It should also be noted that information on global burden, whether measured by deaths or DALYs, has limitations because it does not provide information on the cost-effectiveness of various interventions. This information is required if prevention activity is to be targeted as appropriately as possible, but information on the number of deaths makes an important contribution to awareness raising, monitoring and to initial prioritization of resources. Included in this issue are several papers evaluating the cost-effectiveness of occupational interventions.

CONCLUSION
In the last decade there have been several studies to estimate the number of deaths at a global level arising from work-related exposures. The more recent, larger estimates have used better methodology and are probably more accurate. The WHO CRA estimates appear appropriate for the limited number of occupational exposures and conditions included, but are a major underestimate of the overall number of work-related deaths at a global level. The best estimate of global work-related deaths is approximately two million per year, with disease responsible for the vast majority of these, but even this is likely to be a considerable underestimate of the true number of deaths because of shortcomings in the available data. No reliable global estimates of bystander deaths are available. Improvements in the estimates are likely to come from the use of different methodologies and improvements in the availability and use of local data.

DISCLAIMER
The views expressed in this article are those of the authors and do not necessarily reflect the position of the World Health Organization.

ACKNOWLEDGEMENTS
The authors would like to thank Dr Jim Leigh, who provided information on his global burden analyses. Aspects of this paper were presented and discussed at the 17th International Symposium of Epidemiology in Occupational Health. The authors would like to acknowledge the conference participants for the improvements to the paper that arose from that discussion. This project was funded by the World Health Organization.

REFERENCES

Takala J. 2002. Introductory report: Decent work - safe work. XVIIth World Congress on Safety and Health at Work Vienna: ILO.