Tuberculosis Active Case Finding Strategies in the United States

Mary Reichler, M.D.
Division of Tuberculosis Elimination
Centers for Disease Control and Prevention
Atlanta, Georgia, U.S.A.

WHO Scoping Meeting on TB Screening / Active Case Finding
May 31, 2011
Overview

• Epidemiology of TB
• Active case finding strategies
• Contact investigation
• Results of a prospective contact investigation study
Reported TB Cases
United States, 1982–2010*

*Updated as of February 26, 2011. Data are provisional.
TB Case Rates in U.S.-born vs. Foreign-born Persons United States, 1993–2010*

*Updated as of February 26, 2011. Data are provisional.
Number of TB Cases in U.S.-born vs. Foreign-born Persons
United States, 1993–2010*

*Updated as of February 26, 2011. Data are provisional.
Active Case Finding Strategies in the US

- Contact investigation
- Screening HIV-infected persons
- Targeted testing of high risk groups
 - immigrants and refugees
 - correctional facilities
 - congregate settings
 - healthcare workers
- Outbreak investigations
Active Case Finding Strategies in the US

• Screening HIV-infected persons
• 2009 National Guidelines for prevention and treatment of opportunistic infections
 - baseline screening with TST or IGRA
 - preventive treatment only if (+) TST/IGRA
 - annual screening if high exposure risk
 - CXR if (+) TST or IGRA
• No national data on implementation or yield
• TB/HIV co-infection rate 6% / NNS >1500
Active Case Finding Strategies in the US

• Targeted testing of immigrants and refugees
• 400,000 immigrants annually
• Overseas screening
 - CXR, if abnormal 3 smears
• High rates of TB in first 6 months in the US
• No national data
Active Case Finding Strategies in the US

- Lowenthal IJTLTD 2011
 - addition of culture to overseas screening algorithm resulted in decrease in TB rates
 - 86 TB / 2049 (4.2%) CXR, 3 smears
 - 22 TB / 1430 (1.5%) CXR, 3 smears, culture
 - NNS: 24 before, 65 after
Active Case Finding Strategies in the US

- Targeted testing in correctional facilities
- 1996 CDC Guidelines for prevention and control of TB in correctional facilities
 - symptom screen + TST at intake
- No national data
- Federal Bureau of Prisons, 2001
 - 75 TB cases / 25,707 screened (NNS=343)
- NYC Jails, 2009
 - 2 TB cases / 64,948 screened (NNS=32474)
Contact Investigation

Household

CLOSE CONTACTS
• 30-40% latent TB
• 2-4% TB disease

Social

Work / School

SOURCE PATIENT

CONTACTS
- High Priority
- Medium Priority
- Low Priority

Close Contacts

Other-than-Close Contacts
Who Should Be Identified And Screened

• Investigation of contacts and treatment of infected contacts an important component of US TB elimination strategy
• 2nd in priority to treatment of TB disease
• Priority-based screening of persons at highest risk of TB exposure, infection, and disease
• National Guidelines developed in 2005
Active Case Finding Strategies in the US

• Contact investigation

<table>
<thead>
<tr>
<th>Report</th>
<th>No. contacts</th>
<th>Active TB (%)</th>
<th>NNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marks AJRCCM 2000</td>
<td>6225</td>
<td>2%</td>
<td>46</td>
</tr>
<tr>
<td>Reichler JAMA 2002</td>
<td>2095</td>
<td>2%</td>
<td>50</td>
</tr>
<tr>
<td>Jereb IJTLD 2003</td>
<td>33521</td>
<td>1%</td>
<td>89</td>
</tr>
</tbody>
</table>
Rates, Timing, and Risk Factors for TB Disease Among Contacts to Culture-Positive Pulmonary TB Patients Enrolled in TBESC Task Order 2

TBESC Task Order 2

WHO Meeting on Tuberculosis Screening/ Active Case Finding
Geneva, Switzerland
May 31, 2011
Study Objectives

- Determine the yield of contact investigations for new cases of active TB
- Evaluate rates and timing of TB disease among contacts to active pulmonary TB patients
- Determine the proportion of TB cases which can still be prevented at the time of contact investigation
Study Design

- 9 TBESC project sites
- Enrollment 2002 - 2006
- Case eligibility: Culture (+) pulmonary TB cases ≥ 15 years of age
- Contacts with ≥ 15 hrs/week of exposure
- Procedures:
 - Case and contact interviews
 - Environmental assessment
 - TB / HIV registry matches
Study Design

- 9 Sites:

- US / Canadian- and foreign-born populations well characterized with regard to:
 - Frequency, duration, and timing of TB exposure
 - TB case infectiousness, host susceptibility, and exposure environment
Study Design

- 718 TB patients and 4566 contacts enrolled
- 197 TB cases among contacts (4.3%)
- Dates of treatment start used to define onset of TB in TB patients and contacts

<table>
<thead>
<tr>
<th>Treatment interval</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>< - 30 days</td>
<td>Prior TB</td>
</tr>
<tr>
<td>-30 – 30 days</td>
<td>Co-prevalent TB</td>
</tr>
<tr>
<td>> 30 days</td>
<td>Secondary TB</td>
</tr>
</tbody>
</table>
Timing of TB Among Contacts By Interval from TB Patient Treatment Start

N=197

- Prior TB (n=28)
- Co-prevalent TB (n=75)
- Secondary TB (n=94)
Timing of TB Among Contacts By Interval from TB Patient Treatment Start

Number of Contact-cases

Time after TB Patient Diagnosis (months)
Diagnosis of TB Among 4566 Contacts

Treatment Interval

<table>
<thead>
<tr>
<th>Interval</th>
<th>Cases</th>
<th>Cumulative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>< -30</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>-30 – 0</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>1 - 30</td>
<td>55</td>
<td>52</td>
</tr>
<tr>
<td>31 – 60</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>61 – 90</td>
<td>19</td>
<td>81</td>
</tr>
<tr>
<td>91 – 180</td>
<td>10</td>
<td>86</td>
</tr>
<tr>
<td>181 – 270</td>
<td>7</td>
<td>90</td>
</tr>
<tr>
<td>271 – 365</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>366 – 730</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>731 - 1096</td>
<td>2</td>
<td>95</td>
</tr>
</tbody>
</table>
TB Case Rates Among Contacts By Interval From TB Patient Treatment Start

<table>
<thead>
<tr>
<th>Interval</th>
<th>Cases</th>
<th>Rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30 – 0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1 - 30</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>31-60</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>61-90</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>91-180</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>181-270</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>271-365</td>
<td>8</td>
<td>2892/10^5</td>
</tr>
<tr>
<td>366-730</td>
<td>4</td>
<td>87/10^5</td>
</tr>
<tr>
<td>731-1095</td>
<td>2</td>
<td>43/10^5</td>
</tr>
</tbody>
</table>

*Cases per 10^5 population per year
Characteristics of Contacts With TB vs. No TB

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TB (N=169)</th>
<th>No TB (N=4397)</th>
<th>NNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 5 years</td>
<td>51 (30)</td>
<td>411 (9)*</td>
<td>9</td>
</tr>
<tr>
<td>Household</td>
<td>114 (67)</td>
<td>2726 (62)</td>
<td>25</td>
</tr>
<tr>
<td>Shared bedroom</td>
<td>36 (32)</td>
<td>492 (18)*</td>
<td>15</td>
</tr>
<tr>
<td>HIV+</td>
<td>15 (17)</td>
<td>44 (4)*</td>
<td>4</td>
</tr>
<tr>
<td>Tuberculin skin test +</td>
<td>120 (96)</td>
<td>1412 (46)*</td>
<td>13</td>
</tr>
<tr>
<td>Smear+</td>
<td>139 (82)</td>
<td>3645 (83)</td>
<td>27</td>
</tr>
<tr>
<td>Cough</td>
<td>152 (90)</td>
<td>3584 (82)</td>
<td>25</td>
</tr>
<tr>
<td>Weight loss</td>
<td>141 (83)</td>
<td>3039 (69)*</td>
<td>23</td>
</tr>
<tr>
<td>Exposure hrs ≥500</td>
<td>102 (60)</td>
<td>1999 (45)*</td>
<td>21</td>
</tr>
<tr>
<td>Smear+ and household</td>
<td>93 (55)</td>
<td>2218 (50)</td>
<td>25</td>
</tr>
</tbody>
</table>
Conclusions

- Contact investigations have a high yield for new cases of TB

- Contact investigations are an important means of detecting co-prevalent and secondary TB cases and placing them on treatment, thus preventing further transmission
Conclusions

• TB case detection rates among exposed contacts were highest in the month following TB patient diagnosis, then fell steadily but remain elevated for at least three years
Conclusions

• 4% of exposed contacts developed TB disease

• 81% of the contact-cases occurred within the first three months after TB patient diagnosis

• 16% of the contact-cases were preventable

• Rates of preventable TB:
 - 1st year: 0.5-1.5%
 - 2nd year: 0.09%
 - 3rd year: 0.04%
Conclusions

• Children < 5 years of age, HIV+ contacts, and contacts with > 2000 total hours of exposure had the highest likelihood of TB

• Contacts with a new TST+ were at greatest risk of developing TB
Conclusions

• These data and further multivariate analyses may be useful to health departments in:
 - prioritizing contact investigations
 - developing risk-based screening algorithms
 - focusing preventive treatment efforts towards contacts at highest risk of developing TB disease
TO2 Investigators and Study Coordinators

University of Arkansas
Iram Bakhtawar
Cheryl LeDoux

Respiratory Health Association
Jim McAuley
Judith Beison
Kristine Urban

University of British Columbia
Mark Fitzgerald
Monika Naus

Emory University
Henry Blumberg
Jane Tapia
Lily Singha

Johns Hopkins University
Susan Dorman
Wendy Cronin
Elizabeth Munk

New Jersey Medical School
National Tuberculosis Center
Bonita Mangura
Anna Samedova
TO2 Investigators and Study Coordinators

<table>
<thead>
<tr>
<th>Columbia University</th>
<th>Vanderbilt University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neil Schluger</td>
<td>Tim Sterling (Co-PI)</td>
</tr>
<tr>
<td>Yael Hirsch-Moverman</td>
<td>Tamara Chavez-Lindell</td>
</tr>
<tr>
<td>Joyce Thomas</td>
<td>Fernanda Maruri</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of Manitoba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earl Hershfeld</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case Western Reserve University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christina Hirsch</td>
</tr>
</tbody>
</table>
DTBE, CDC

DTBE Study Personnel and Other Contributors

DTBE, CDC
Melissa Fagley
Bin Chen
Yan Yuan
Hui Zhang
Chi-Cheng Luo
Erica Sigman
Andy Vernon
Lorna Bozeman
Brandon Campbell
Anil Sharma
Andrey Borisov
Beverly DeVoe Payton
Michael Chen

Denise Garrett
Tom Navin
Brian Sizemore
Debbie McCune
Taraz Samandari
Farah Parvez
Mark Lobato
Drew Posey
Mary Naughton
Eric Pevzner
Study Design

- **Preventable cases** defined as contact-cases with treatment >30 days after TB patient treatment start with no evidence of TB disease at initial timely evaluation.

- **Possibly preventable cases** defined as contact-cases with treatment > 30 days after TB patient treatment with delayed or no initial evaluation and subsequent abnormal CXR.

- **Not preventable cases** defined as contact-cases with treatment before or < 30 days after TB patient treatment start, or abnormal CXR < 30 days after TB patient treatment start.
Proportion of TB Cases Among Contacts Preventable At Contact Investigation

N = 197

- Not preventable: 121 (61%)
- Possibly preventable: 45 (23%)
- Preventable: 31 (16%)
Conclusions

• These data may be useful to research groups planning clinical trials for TLTBI by providing:

- data on timing and risk of TB among exposed contacts useful for sample size calculations and determining length of follow-up

- data on epidemiologic characteristics of contacts at risk for TB useful for developing enrollment and randomization criteria
TST Screening of 4,566 Contacts

- Completed screening: 3246 (71%)
- Prior TB/TST(+): 216 (5%)
- Not screened: 389 (8%)
- No post-exposure TST: 721 (16%)
TST and Evaluation Results
Among 3,246 Contacts Who Completed Screening

- TST negative 1665 (51%)
- Initial TST positive 1222 (38%)
- TST conversion 200 (6%)
- Active TB 169 (5%)
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%) contacts</th>
<th>NNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics of Contacts With TB vs. No TB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB (N=169)</td>
<td>No TB (N=4397)</td>
<td>27</td>
</tr>
<tr>
<td>Age < 5 years</td>
<td>51 (30)</td>
<td>411 (9)*</td>
</tr>
<tr>
<td>Household</td>
<td>114 (67)</td>
<td>2726 (62)</td>
</tr>
<tr>
<td>Shared bedroom</td>
<td>36 (32)</td>
<td>492 (18)*</td>
</tr>
<tr>
<td>HIV+</td>
<td>15 (17)</td>
<td>44 (4)*</td>
</tr>
<tr>
<td>Tuberculin skin test +</td>
<td>120 (96)</td>
<td>1412 (46)*</td>
</tr>
<tr>
<td>Smear+</td>
<td>139 (82)</td>
<td>3645 (83)</td>
</tr>
<tr>
<td>Cough</td>
<td>152 (90)</td>
<td>3584 (82)</td>
</tr>
<tr>
<td>Weight loss</td>
<td>141 (83)</td>
<td>3039 (69)*</td>
</tr>
<tr>
<td>Exposure hrs ≥500</td>
<td>102 (60)</td>
<td>1999 (45)*</td>
</tr>
<tr>
<td>HIV+ or Age < 5</td>
<td>82 (48)</td>
<td>883 (20)*</td>
</tr>
<tr>
<td>HIV+ or Age < 5 or shared</td>
<td>65 (38)</td>
<td>455 (10)*</td>
</tr>
<tr>
<td>Cough and weight loss</td>
<td>134 (79)</td>
<td>2638 (60)*</td>
</tr>
<tr>
<td>Cough or weight loss</td>
<td>159 (94)</td>
<td>3985 (90)</td>
</tr>
</tbody>
</table>