Active TB case finding in the Western Pacific Region experience and policy direction

Nobu Nishikiori
Medical Officer, Stop TB
WHO Western Pacific Regional Office
Contents

• Importance of ACF for TB control in the Region
• Experience of ACF in the Region
• ACF targeting tool – to guide TB REACH project formulation
• Suggestions for ACF guidelines
 – Risk-by-Risk approach
 – Consideration for tailored care and support
Increasing importance of ACF

- Case detection stagnating in most of the countries in the Region
- TB concentrates among high risk populations
- Emerging challenges
 - Migrants
 - Urban poor
 - Emerging risk factors for TB
 - Aging, tobacco, diabetes
- Low diagnostic sensitivity
- Infectious patients with minor symptoms may not seek care
Migrant TB burden in Malaysia
Number and % of migrant among all TB cases, by State, 2008

<table>
<thead>
<tr>
<th>State</th>
<th>Number of migrant TB cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabah</td>
<td>355</td>
</tr>
<tr>
<td>Selangor</td>
<td>134</td>
</tr>
<tr>
<td>Johor</td>
<td>375</td>
</tr>
<tr>
<td>Kuala Lumpur</td>
<td>959</td>
</tr>
</tbody>
</table>

% migrant among all TB cases:
- 0.000 - 3.000
- 3.000 - 5.000
- 5.000 - 7.000
- 7.000 - 28.000

Source: World Health Organization, Western Pacific Regional Office
Experience in ACF (1)
Prisons and confined settings

Entry screening
• e.g. Mongolia
 – ‘double entry screening’ with fluorography film
 – Significant reduction of TB burden

Periodic (or project-based) screening
• e.g. Viet Nam
 – X-ray → Microscopy + Culture
 – Prevalence 1560 (S+) 2537 (C+) per 100 000 (NNS 40)
• e.g. Cambodia
 – X-ray → Microscopy
 – Prevalence 950 (S+) per 100 000 (NNS 105)

‘Enhanced’ case finding
• Philippines
 – Peer cough monitoring – cough surveillance
Reduction of TB burden among prisoners in Mongolia

- **Decline in TB CNR**
 - Prison vs national
 - 18 times in 2001
 - 10 times in 2005
 - 5 times in 2008

- **Improvement of entry TB screening on detention (461) and on allocation (401)**

- **Decline among sentenced prisoners (Red)**

Joint Ministerial Order: Screening policy established

- 100% entry screening with GF support
- Equipment upgraded

Global Fund support

Continuous improvement of prison conditions
Experience in ACF (2)
TB contact investigation

Routine CI established and reported
- e.g. China, Mongolia, Malaysia and other IBCs
- Yield tends to vary…problem in implementation level?
 Low sensitivity of the procedures?
 Other environmental determinants?

Policy established but weak implementation and reporting
- e.g. Many HBCs
- Too labor intensive for over-stretched health systems

CI combined with community-based ACF in Cambodia
- Unique strategy in Cambodia
- Can be very cost-effective

- Define target areas with high TB case load
- Identify smear positive index cases from TB register and:

 Strategy 1 (Adult contacts):
 - House-to-house symptom screening + microscopy sessions

 Strategy 2 (Adult contacts):
 - House-to-house invitation + X-ray & microscopy sessions

 Strategy 3 (childhood contacts):
 - House-to-house invitation + PPD sessions
Community-based ACF in Cambodia: A step-wise approach

Step 1: Geographical targeting based on TB case load and socio-economic status

Step 2: Local advocacy meeting

Step 3: Community volunteers conduct house-to-house visit and invite contacts and TB suspects to ACF sessions

Step 4: ACF team (stay 1-2 weeks) screen all TB suspects with mobile X-ray

Step 5: Three sputum smear microscopy for diagnosis

Step 6: Treatment follow-up by local health workers and volunteers

Target Community

TB suspects

Abnormal chest X-ray

Microscopy
Rationale for “Retrospective” CI

• Routine contact investigation in HBCs
 – Should be done as much as possible
 – But…difficult to implement fully

• Contacts have increased risk of active TB disease for several years
 – One time CI might miss many cases
 – Cumulating cases for 1-2 years can be cost-effective

• Contacts share same environmental risks with their index

Results (2005-2010)
How much yield we can get?

TB cases diagnosed:
(among all participants attended ACF sessions)
All TB: 6% to 12%
NNS: 8 ~ 17
Smear +ve: 2% to 3.5%
NNS: 28 ~ 50

* A systematic review (Morrison et al, 2008) reported pooled yields of 4.5% and 2.3% for all and confirmed TB respectively.
Was it cost-effective?

- Cost data was available for the sessions in 2010
- The strategy is highly cost effective
 - Cost per case identified
 - Diagnostic cost: $21 per case
 - Overall cost: $113 per case (logistics and operations cost)

 (c.f. TB REACH criteria $350 per case diagnosed and successfully treated)
The upgraded strategy for TB REACH Project 2011

• Better area targeting using:
 – Socio-economic indicators (poverty, health access, etc)
 – TB case load

• Further increase the yield
 – Screening: Symptom + X-ray for all contacts
 – Diagnostic: Xpert MTB/RIF
 – Target adult and childhood contacts together
A tool for ACF targeting and strategy selection

→ Guidance was needed to support formulating ACF projects (for TB REACH)
→ An electric tool for ACF targeting developed

What factors determine the yield and cost-effectiveness of ACF?

1. TB prevalence among the target
 • Higher prevalence → higher yield

2. Diagnostic algorithms
 • More comprehensive screening → higher cost & yield

3. Targeting approaches (not yet included)
 • Scattered target → higher ‘opportunity’ cost
1. TB Prevalence among the target

- Number needed to screen (NNS) shoot up as TB prevalence goes down

- Roughly, ACF is not feasible for a target < 0.5% prevalence (if X-ray for all)

- However, NNS alone cannot guide whether we should target or not
 - Diagnostic cost significantly varies between dx algorithms
 - Operational and logistics cost also different for each target/context

- How to find populations with > 0.5% prevalence?
2. Diagnostic algorithms and yields

Model algorithms

1. Symptom screening → microscopy
 (routine programme model)
 low cost & low yield
2. Symptom → microscopy + x-ray
3. X-ray + symptom → microscopy
4. X-ray + symptom → microscopy + culture
 (prevalence survey model)
 high-cost & high-yield
5. X-ray + symptom → Xpert MTB/RIF
 (prevalence survey model with Xpert)
 high cost model with Xpert
6. Symptom → X-ray → Xpert MTB/RIF
 low cost model with Xpert

Estimating yields

- How many TB cases detected for each algorithm roughly defined by suspect/yield profile as below example
- Important to note that:
 - Initial symptom screening substantially decrease a yield
 - Low sensitivity of microscopy

Fig. An example of yield profile based on the prevalence survey, Cambodia 2002.
An example of the tool outputs:
Diagnostic cost per case detected

- **Prevalence > 2%**
 - Cost effective for all strategies including prevalence survey models (culture or Xpert)

- **Prevalence 1-2%**
 - X-ray screening (strategy 3) may be still cost-effective
 - Culture probably feasible but requires careful planning

- **Prevalence <1.0%**
 - Up to strategy 1 & 2 acceptable (i.e. routine procedure)

* Cut-off of USD 200 are arbitrary. TB REACH criteria employ USD 350 per case detected and successfully treated.
General observations from the tool outputs

- Conservative algorithm can be acceptable even NNS is high
- The higher the prevalence → the more extensive approach → high yield

However, we have a dilemma…
 - Very high risk groups → tend to be small
 - Lower risk groups → larger size and difficult to target

So the key is to find a high risk target with a good pop size

Risk-by-Risk – combining multiple risks – might be a way to manipulate a risk profile and a target size
 e.g. Geographical targeting x TB contacts (Cambodian Retro CI),
 Deported migrants x detention history (another TB REACH project in Cambodia)
Narrowing down the target: **Risk x Risk approach**

(Elderly x diabetics)

Cumulative hazards for active TB by diabetic status, among a cohort of clients (>65yrs) registered with an elderly health service in Hong Kong

- HbA1c >= 7%:
 - annual incidence
 - 422 per 100 000

- No diabetes:
 - annual incidence
 - 214 per 100 000

(Elderly x smokers)

Cumulative hazards for active TB by smoking status, among a cohort of clients (>65yrs) registered with an elderly health service in Hong Kong

- Current smoker:
 - annual incidence
 - 735 per 100 000

- Ex-smoker:
 - annual incidence
 - 427 per 100 000

- Never smoked:
 - annual incidence
 - 174 per 100 000

Neighborhood factor analysis for geo-targeting

- Neighbourhood factor analyses using socio-economic characteristics have a potential to guide geo-targeting

- Risk micro-stratification to identify target area/population

- **Risk x Risk** approach
 - e.g. poor neighborhood x malnourished
 - e.g. densely populated area x contact investigation

Barangay-wise population density, Metro Manila

![Map of Barangay-wise population density in Metro Manila](map.jpg)
Risk-by-Risk Table

<table>
<thead>
<tr>
<th>Target population (venue)</th>
<th>Entire group</th>
<th>HIV</th>
<th>Smokers</th>
<th>Malnourished</th>
<th>TB contact history</th>
<th>Alcoholics</th>
<th>Diabetes</th>
<th>Elderly</th>
<th>Previous TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slum dwellers</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>HIV</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prisoners</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrants</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malnourished</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB contacts</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Alcoholics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miners</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Elderly</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous TB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Targeted case finding approaches require specific measures to provide care

- High risk populations requires a tailored service delivery mechanism
 - e.g. Migrants / urban poor
 - highly mobile / high default and transfer
 - Social and financial insecurity
 - e.g. Prisons
 - High co-morbidity including HIV (what if ARV is not available?)
 - Transfer and referral system (release screening?)

- For guidelines:
 - Cases successfully treated is important outcome (not only case finding)
 - Is there any group for which ACF should not be conducted unless the specific support mechanism is not ensured (other than routine DOTS)?

[Graph showing treatment outcome of new smear positive TB by residence status, Beijing, 1997-2002]
Summary

- ACF is potentially a very important TB control strategy in the Region
- Experience shows some positive outcomes in the Region (though limited)
- An interactive tool can facilitate country level targeting, strategy selection and planning
- Risk-by-risk approach can help increase the TB risk and narrowing down the size of the target population (concentration and selection)
 - “Does combining more than two risk factors to identify the target population increase the yield and cost-effectiveness of TB screening?”
- Targeted ACF requires extensive consideration for treatment and care delivery strategies
 - “Does a tailored care mechanism for a specific high risk group (migrant, prisoners, etc) improve TB treatment outcome compare to the routine DOTS programme”