TB Data Quality Assurance: United Kingdom

Ibrahim Abubakar, MBBS, PhD, FFPH
Tuberculosis Section
HPA Centre for Infections
• 8,655 cases in 2008
• 14.1 per 100,000
• Increase over last 2 decades
TB Surveillance systems

- **INCIDENT CASES**
 - ETS
 - NOIDS

- **TREATMENT OUTCOMES**

- **FINGERPRINTS**
 - National strain typing database

- **ISOLATES**
 - MycobNet

- **Death Registrations**

INCIDENTS & OUTBREAKS
TB surveillance – data flow

Clinician & nurse: case of TB

Specimen

Feedback

Local laboratories

Species, sensitivities

CCDC in HPU

Regional Coordinator

Web-based

Matching

HPA national database

MycobNet

Reference Labs

Culture
DATA QUALITY
- Completeness
- No duplications, no misclassifications
- Internal and external consistency

IMPROVE surveillance system

TRENDS
Do surveillance data reflect trends in TB incidence and mortality?
- Analyse time-changes in notifications and recorded deaths alongside changes in case-finding, case definitions, HIV prevalence and other determinants of changes in TB incidence and TB mortality

EVALUATE trends and impact of TB control

ARE ALL TB CASES AND DEATHS CAPTURED IN SURVEILLANCE DATA?
- "Onion" model
- Inventory studies
- Capture re-capture studies
- Prevalence surveys
- Innovative operational research

UPDATE estimates of TB incidence and mortality

TB notifications ≈ TB incidence
TB deaths in VR system ≈ TB mortality

If appropriate, CERTIFY TB surveillance data as direct measure of TB incidence and mortality
Quality Scheme

• Components
 – Completeness
 – Accuracy
 – Validity
 – Timeliness

• Single Quality System - QPulse
Assessing completeness

• “Inventory Method”
 – Comparison of laboratory and clinical reports
 – TB-HIV matching
 – Bespoke audits: British Paediatric Surv Unit

• Capture Recapture
 – Overall data
 – Mortality

• Modelling from mortality
Completeness method 1: Matching Clinical and Lab Register, by region, 2003 and 2004

<table>
<thead>
<tr>
<th>Region</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>East Midlands</td>
<td>19/290</td>
<td>7</td>
</tr>
<tr>
<td>East of England</td>
<td>28/229</td>
<td>12</td>
</tr>
<tr>
<td>London</td>
<td>356/2131</td>
<td>17</td>
</tr>
<tr>
<td>North East</td>
<td>16/104</td>
<td>15</td>
</tr>
<tr>
<td>North West</td>
<td>90/360</td>
<td>25</td>
</tr>
<tr>
<td>South East</td>
<td>139/387</td>
<td>36</td>
</tr>
<tr>
<td>South West</td>
<td>16/132</td>
<td>12</td>
</tr>
<tr>
<td>Wales</td>
<td>24/140</td>
<td>17</td>
</tr>
<tr>
<td>West Midlands</td>
<td>58/510</td>
<td>11</td>
</tr>
<tr>
<td>Yorkshire & the Humber</td>
<td>58/332</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>804/4615</td>
<td>17</td>
</tr>
</tbody>
</table>
Completeness Method 1: Reasons for not matching and solutions implemented

Shouldn’t be on Laboratory Register (MycobNet)
- False positives (cross contamination) – not denotified
- Not UK resident
- Non-human isolate

Solution: Automated identification of such isolates

In Clinical Register (ETS) but not matched successfully
- Case report more than 1 year from specimen date
- Missed by matching method (misspelt, insufficient completed variables to match etc.)

Solution: Improve matching algorithm with stochastic modelling, use of Soundex codes, local responsibility for matching

Should be on Clinical Register (ETS), but isn’t
- Treatment started but ETS not completed
- Patient lost to follow up (Treatment never started despite +ve culture)
- Patient died and ETS never completed

Solution: Identification of districts with particular issues, local audits
Completeness Method 2: Source of information on TB/HIV co-infection England and Wales

TB reports from clinicians (Enhanced TB surveillance)

TB reports from laboratories (MycobNet)

HIV/AIDS patients dataset

Clinical HIV reports collecting demographic and epidemiological information
Completeness Method 2: Proportion of patients with active TB reported only to the HIV surveillance database

<table>
<thead>
<tr>
<th>Year</th>
<th>Not reported as active cases of tuberculosis to tuberculosis surveillance database</th>
<th>Total co-infected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number (% of total co-infected)</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>40 (23.7)</td>
<td>169</td>
</tr>
<tr>
<td>2000</td>
<td>52 (20.6)</td>
<td>253</td>
</tr>
<tr>
<td>2001</td>
<td>54 (17.2)</td>
<td>314</td>
</tr>
<tr>
<td>2002</td>
<td>78 (17.0)</td>
<td>459</td>
</tr>
<tr>
<td>2003</td>
<td>99 (18.1)</td>
<td>548</td>
</tr>
<tr>
<td>Total</td>
<td>323 (18.5)</td>
<td>1,743</td>
</tr>
</tbody>
</table>

Ahmed A, Thorax 2007
Completeness Method 3: Bespoke Paediatric TB Survey

- BPSU 320, ETS 446, Matched: 222
- Total: 557; 98 (18%) reported only to BPSU, and 237 (42%) reported only to ETS
- 19% under-reporting to ETS
- Matching on year, partial postcode, gender

BPSU – British Paediatric Surveillance Unit, ETS – Enhanced Tuberculosis Surveillance

Teo S et al. ERJ. 2008
Completeness Method 4: NATURALIST'S NOTEBOOK

Saturday
17 spotted butterflies caught, marked and released.

Monday
13 spotted butterflies caught, of which 3 have marks from Saturday.

Calculation

\[
3/13 = 23\% \text{ of all butterflies were caught and marked on Saturday.}
\]

\[
23\% = 17, \text{ therefore } 100\% = 17 \times 100 \div 23 = 74.
\]

There are 74 spotted butterflies in the neighbourhood.
Completeness Method 4: RESULTS

Four years' incidence of TB in England

Data:

\[\begin{array}{ccc}
7860 & 6311 & 879 \\
6437 & 6437 & \\
4192 & 4192 & 479 \\
5848 & 5848 & 5848 \\
\end{array} \]

Results: \(n = 32,006 \)

\[\text{CRC } n_0 = 20,523 \ (18,109, \ 23,259) \]

Under-notification = 15.9%

Van Hest et al, Epid and Inf 2008
Completeness Method 4: Capture recapture - Mortality

Treatment Outcome 853, 77%
NHS Register 888, 80%
Death Certificates 527, 48%

61 additional deaths estimated

Crofts J, IJTLD 2008
PROBLEMS

List dependency: You are more likely to get on to Laboratory Register if you are on Hospital Admission Data (HES).

Case dependency: You are more likely to be listed if your mother is listed.

Case heterogeneity: You are less likely to be diagnosed if you have no GP.

Overcount: Some people listed do not meet the case definition......especially true for Hospital Admission Data (HES)
Capture Recapture Recommendations

• Should never take precedence over routine surveillance strengthening
• Best when adequately resourced
• Should have at least three data sources
• May provide useful information on data sources and how they relate to each other
• Provides a broad estimate of under-notification that should always be interpreted with local knowledge
Assessing completeness estimates: modelling from mortality

• Back-calculation from mortality
• Bayesian approach allowing incorporation of prior knowledge on progression to death with and with/without treatment
• This combined with mortality data, hospital admissions, and surveillance data allows estimates of incidence and credible intervals to be produced.
Improving completeness: users are prompted to match isolates to case reports or to make new case reports.
Improving completeness

- Local audits in the South East region compared to prescription data and other sources
- Dedicated resources including additional staff
- New electronic system
Assessing accuracy

• **Annual audit of high priority fields**
 • name;
 • date of birth;
 • sex;
 • ethnic group;
 • born/not born in the UK;
 • postcode (with option for ‘no fixed abode’);
 • date of notification;
 • previous TB treatment;
 • site of disease (pulmonary/extra-pulmonary); and
 • sputum smear status (only needs to be completed for pulmonary cases).
Assessing accuracy

<table>
<thead>
<tr>
<th>Variable</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>100</td>
</tr>
<tr>
<td>Date of birth</td>
<td>99.9</td>
</tr>
<tr>
<td>Sex</td>
<td>99.8</td>
</tr>
<tr>
<td>Ethnic group</td>
<td>95.4</td>
</tr>
<tr>
<td>Born in UK</td>
<td>91</td>
</tr>
<tr>
<td>Postcode</td>
<td>99.4</td>
</tr>
<tr>
<td>Date of case report</td>
<td>100</td>
</tr>
<tr>
<td>Previous TB treatment</td>
<td>75</td>
</tr>
<tr>
<td>Site of disease</td>
<td>98.3</td>
</tr>
<tr>
<td>Sputum smear status</td>
<td>82</td>
</tr>
<tr>
<td>Treatment Outcome</td>
<td>95</td>
</tr>
</tbody>
</table>
Improving accuracy

• Training
 – Training event
 – Web-cast

• Automated checks in the web based system
 – NHS number validity
 – Minimum number of fields – trade off
 – Dates
 – Sites of disease
 – Derived fields from postcodes
Improving accuracy: Duplicates identified / Not TB denotified
Assessing validity

- Audit by national internal audit department comparing local, regional and national data
- Programme of audit by TB section
 - Matching audit
 - Next one will be on DOT
Improving validity

- Audit
- Data dictionary
- Training events
- Web casts
Timeliness

Reporting new cases by clinical teams/local TB services (case definitions are given in the appendix on page 39)

- All cases should be reported by the clinical team to the local health protection unit.

- At least 95% of cases should be reported within two weeks of diagnosis or decision to treat with a full course of anti-TB drugs.

- At least 95% of reported cases should include complete data for the key variables (see appendix on page 40 for the key variables).

- At least 95% of all originally notified cases of TB that are subsequently denotified, should be reported within two weeks of the date of the non-TB diagnosis.
Timeliness

• Assessing timeliness: annual audit of reporting dates against national standards

• Improving timeliness
 – High priority identified nationally
 – Use of web-based system – however........
 – Cleaning, validation, record linkage, audits take a lot of time
Applying the Onion Model

Cases recorded in TB notification data

Cases with no access to healthcare

Free healthcare for all via the National Health Service

Cases with access to health services that do not present

Contact tracing, mobile x-ray screening and ‘find and treat’ initiatives

Cases presenting to health services but not diagnosed

Clinical expertise, guidelines and quality assured laboratory services

Diagnosed by private sector but not notified

Minimal private sector in the UK

Diagnosed by NTP but not notified

Focus for UK surveillance
Trends show consistency with immigration patterns

*Immigrants from non-EU and non-commonwealth countries

Sources: Enhanced Tuberculosis Surveillance, Office for National Statistics Long-Term International Migration
Trends show consistency across data sources

Sources: Enhanced Tuberculosis Surveillance, Enhanced Surveillance of Mycobacterial Infections, Statutory Notifications of Infectious Diseases (England and Wales only), UK Mycobacterial Surveillance Network
Resources

• Staff
 – National TB Epidemiology Unit (see organogram below)
 – Regional units (London *5, other units about 0.3 to 1 person per region)
Conclusion

• Complex national system for historical reasons
• Recent improvement in systems
• Trends reflect real changes over time
• Good routine surveillance requires resources