Tuberculosis Transmission in Households and Communities

Christopher C. Whalen, M.D., M.S.
Department of Epidemiology and Biostatistics
Model for *M. Tuberculosis* Transmission

Partition transmission by social constructs

Universe of *M. tuberculosis* Transmission

- Community
 - Health Care Institutions
 - Households
Model for *M. Tuberculosis* Transmission

Assortment of susceptible individuals within social constructs
Kawempe Community Health Study

• Household Contact Study
 – Kawempe Division, Kampala Uganda
 – 1996 – 2010

• Research Aims
 – Estimate household transmission
 • *M. tuberculosis* infection
 • Tuberculosis disease
 – Stratify by HIV serostatus
Household Contact Study Design

Index Cases → Household Contacts → Community Households

- Cure
- Relapse
- Death

Baseline Evaluation
- Tuberculin Skin Testing
- Active Tuberculosis
- HIV Testing

3, 12, 24 Months
- TST Conversion
- Incident Tuberculosis

Creates a cohort of household contacts exposed to an infectious index case
Effect of HIV Serostatus on TB

| Contact Characteristic | HIV Serostatus of Index Case | | | |
|------------------------|-----------------------------|---|---|
| | Seropositive (n = 249) | Seronegative (n = 251) | P Value |
| | - - - - - n (%) - - - - - | | |
| No. contacts | 962 | 960 | - |
| HIV seropositive | 157 (16) | 46 (5) | 0.000 |
| Latent TB Infection | 685 (71) | 769 (80) | 0.000 |
| Active TB | 35 (3.6) | 41 (4.3) | NS |

HIV Serostatus of Contacts

<table>
<thead>
<tr>
<th>Latent TB Infection</th>
<th>Seropositives (n = 203)</th>
<th>Seronegatives (n = 1459)</th>
<th>NS</th>
</tr>
</thead>
</table>
Age-Specific Prevalence of TB Infection
Household Contacts vs. Community Members

Secondary Attack Rates

<table>
<thead>
<tr>
<th></th>
<th>SAR TB</th>
<th>SAR Infection</th>
<th>Risk of TB after new Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>3.0</td>
<td>47.4</td>
<td>6.33</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 5</td>
<td>5.1</td>
<td>50.3</td>
<td>10.1</td>
</tr>
<tr>
<td>>5</td>
<td>2.2</td>
<td>48.5</td>
<td>4.5</td>
</tr>
<tr>
<td>HIV serostatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV+</td>
<td>8.8</td>
<td>47.4</td>
<td>18.6</td>
</tr>
<tr>
<td>HIV-</td>
<td>2.5</td>
<td>47.4</td>
<td>5.3</td>
</tr>
</tbody>
</table>

DNA Fingerprinting

Household Contacts with Active TB by HIV Sero-Status

<table>
<thead>
<tr>
<th>HIV Status</th>
<th>n</th>
<th>RFLP Pattern Compared with Index Case Isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Match</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--- n (%)</td>
</tr>
<tr>
<td>HIV negative</td>
<td>39</td>
<td>33 (84)</td>
</tr>
<tr>
<td>HIV positive</td>
<td>22</td>
<td>13 (59)</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>46 (75)</td>
</tr>
</tbody>
</table>
CART Analysis of MTB Transmission

BMI > 20 (n = 12)

HIV - (n = 7)

HIV + (n = 5)

BMI ≤ 20 (n = 49)

HIV - (n = 30)

Age ≤ 5 (n = 10)

Age > 5 (n = 20)

HIV + (n = 19)

Age ≤ 5 (n = 5)

Age > 5 (n = 14)

Care: No (n = 5)

Care: Yes (n = 9)

RFLP Pattern

<table>
<thead>
<tr>
<th>Same</th>
<th>Different</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
TB Transmission in Community

• Cough Survey
 – Rubaga Division, Kampala, Uganda, 2007 - 2012
 – Random community sample
 – Cough > 2 weeks -> sputum microscopy and culture

<table>
<thead>
<tr>
<th>Total Screened</th>
<th>5088</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Chronic Cough</td>
<td>195</td>
</tr>
<tr>
<td>Active TB</td>
<td></td>
</tr>
<tr>
<td>HIV+</td>
<td>53</td>
</tr>
<tr>
<td>HIV-</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

Active Case Finding for TB
Rubaga Division, Kampala, Uganda

<table>
<thead>
<tr>
<th></th>
<th>HIV Seropositive</th>
<th>HIV Seronegative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF 13%</td>
<td>9</td>
<td>26 P = 0.05</td>
</tr>
<tr>
<td>PCF 9%</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

ACF – Active Case Finding
PCF – Passive Case Finding

P = 0.05
Mathematical Model of TB Dynamics

TB Epidemic driven by HIV seronegative TB cases when HIV prevalence is less than 30%

Relative steady-state prevalence of tuberculosis according to HIV prevalence in population
TB Contact Networks
Rubaga Division, Kampala, Uganda

Network Size = 16
Density = 0.88
Degree mean = 13

Network Size = 15
Density = 0.34
Degree mean = 4
TB Contact Networks
Kampala Uganda

Connections between TB networks
Local Bars
Hospitals and clinics

Partition contact networks by location and time
Relate to TB infection and disease
Summary

• HIV seropositive index TB cases
 – More frequent HIV+ contacts
 – Possibly less infectious

• HIV seropositive contacts
 – Similar likelihood for infection as other contacts
 – Increased risk (3-fold) for disease

• HIV seropositive co-prevalent TB cases
 – Different strains imply additional contact networks besides the household

• HIV seronegative TB cases appear to drive the TB epidemic until HIV prevalence is very high
Acknowledgements

University of Georgia
Andreas Handel
Robert Kakaire
Nibao Zheng
Xiaoping Yin

Uganda
Roy Mugerwa
Moses Joloba
Juliet Sekandi
Sarah Zalwango
Alphonse Okwera
Henry Luzze
Noah Kiwanuka

Case Western Reserve University
Henry Boom
Allan Chiunda

Sponsors
Tuberculosis Research Unit
Fogarty International Center
Doris Duke Charitable Foundation
Estimation of Secondary Attack Rates

\[\text{SAR}_D = \text{SAR}_I^* \ p_D \]

\[\text{SAR}_D = \frac{\text{Cases with same strain}}{\text{Total number of contacts}} \]

\[\text{SAR infection} \approx \ P_{H \in h} - P_{C \in c} \]
\[P_{H \in h} - P_{C \in c} = \text{ARI}^t \text{SAR} \]

\[p_D = \frac{\text{SAR disease}}{\text{SAR infection}} \]
<table>
<thead>
<tr>
<th>Latent TB Infection in Contacts (%)</th>
<th>HIV +</th>
<th>HIV -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 5</td>
<td>62</td>
<td>66</td>
</tr>
<tr>
<td>> 5</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>75</td>
</tr>
</tbody>
</table>
Replacement Principle

As long as one case of tuberculosis is replaced by another, elimination of tuberculosis cannot be achieved
Replacement Principle of TB Control

- Interrupt Transmission
- Prevent Infection
- Prevent Disease

Infectious Tuberculosis Index Case → Transmission of *M. tuberculosis* → Active Tuberculosis In Contact → Latent Tuberculosis Infection → Active Tuberculosis In Contact

→ Prevent Relapse

→ Tuberculosis Relapse

→ Index Case Replaced
Platform for Global Public Health Action

Comprehensive Plan for TB Elimination

- DOTS
- Treat LTBI
- Active Case Finding
- Environmental Controls
- Vaccination
- HIV Care

- Scientific Research
- New Drugs
- New Vaccines
- New Diagnostics
- New Surveillance

- Sustainable Development
- Poverty Mitigation
- Affordable Modern Housing
- Medical and Public Health Care Systems
- Competent TB Control Programs

Stable and Supportive Government Commitment to TB Elimination

Regional TB Control Alliances between Industrialized and Developing Countries