Tobacco Free Initiative

International Consultation on Environmental Tobacco Smoke (ETS) and Child Health

11-14 January 1999
Geneva, Switzerland

Consultation Report
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Executive Summary</td>
<td>4</td>
</tr>
<tr>
<td>II. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>III. Health effects of children’s exposure to tobacco smoke</td>
<td>6</td>
</tr>
<tr>
<td>A. Respiratory health and middle ear disease</td>
<td>6</td>
</tr>
<tr>
<td>B. Foetal growth</td>
<td>8</td>
</tr>
<tr>
<td>C. Sudden infant death syndrome (SIDS)</td>
<td>8</td>
</tr>
<tr>
<td>D. Neurodevelopmental effects</td>
<td>9</td>
</tr>
<tr>
<td>E. Cardiovascular effects</td>
<td>10</td>
</tr>
<tr>
<td>F. Childhood cancers</td>
<td>10</td>
</tr>
<tr>
<td>G. Summary</td>
<td>11</td>
</tr>
<tr>
<td>IV. Measurement: health impact, exposure and economic impact</td>
<td>11</td>
</tr>
<tr>
<td>A. Measuring health impact</td>
<td>12</td>
</tr>
<tr>
<td>B. Measuring exposure</td>
<td>12</td>
</tr>
<tr>
<td>C. Measuring economic impact</td>
<td>13</td>
</tr>
<tr>
<td>D. Extrapolating to developing countries</td>
<td>14</td>
</tr>
<tr>
<td>E. Summary</td>
<td>14</td>
</tr>
<tr>
<td>V. Interventions to eliminate children’s exposure to environmental</td>
<td>14</td>
</tr>
<tr>
<td>tobacco smoke</td>
<td></td>
</tr>
<tr>
<td>A. The need for action</td>
<td>14</td>
</tr>
<tr>
<td>B. Strategies for reducing children’s exposure to tobacco smoke</td>
<td>15</td>
</tr>
<tr>
<td>VI. Conclusions and recommendations</td>
<td>16</td>
</tr>
<tr>
<td>VII. Background Reading</td>
<td>18</td>
</tr>
<tr>
<td>VIII. Annex 1</td>
<td>20</td>
</tr>
<tr>
<td>IX. List of Participants</td>
<td>21</td>
</tr>
</tbody>
</table>
I. Executive Summary

Responding to the 1997 Declaration on Children’s Environmental Health of the Environment Leaders of the Eight (G8)*, WHO convened an International Consultation on Environmental Tobacco Smoke (ETS) and Child Health in Geneva, Switzerland from 11 to 14 January 1999. The Consultation brought together experts from developed and developing countries to examine the effects of ETS on child health and to recommend interventions to reduce these harmful effects and eliminate children’s exposure.

The Consultation concluded that ETS is a real and substantial threat to child health, causing death and suffering throughout the world. ETS exposure causes a wide variety of adverse health effects in children, including lower respiratory tract infections such as pneumonia and bronchitis, coughing and wheezing, worsening of asthma, and middle ear disease. Children’s exposure to environmental tobacco smoke may also contribute to cardiovascular disease in adulthood and to neurobehavioural impairment.

The Consultation also concluded that maternal smoking during pregnancy is a major cause of sudden infant death syndrome (SIDS) and other well-documented health effects, including reduced birth weight and decreased lung function. In addition, the Consultation noted that ETS exposure among nonsmoking pregnant women can cause a decrease in birth weight and that infant exposure to ETS may contribute to the risk of SIDS.

The scope of these health effects on children is broad, given that almost half of the world’s children are regularly exposed to ETS. Most have no choice in the matter. Preventing children’s exposure to tobacco smoke will lead to improved child, adolescent, and ultimately adult health, resulting in reduced mortality and substantial savings in health care and other direct costs.

Swift action to highlight the need for strong public policies to protect children from exposure to tobacco smoke is essential. These policies should aim to ensure the right of every child to grow up in an environment free of tobacco smoke. This can be achieved by two complementary strategies: eliminating children’s contact with tobacco smoke in utero and in childhood, and reducing overall consumption of tobacco products. Effectively implementing these strategies requires combining educational programmes and legislative interventions aimed particularly at eliminating tobacco use in settings frequented by children.

* Canada, France, Germany, Italy, Japan, Russian Federation, United Kingdom of Great Britain and Northern Ireland, United States of America
II. Introduction

In response to the Declaration on Children’s Environmental Health, adopted by the Environment Leaders of the Eight (G8) in May 1997, the World Health Organization (WHO) convened an International Consultation on Environmental Tobacco Smoke (ETS) and Child Health in Geneva from 11 to 14 January 1999. Experts from developing and developed countries gathered to examine the effects of exposure to tobacco smoke on child health and to develop recommendations for action to eliminate this exposure.

The adverse health effects of tobacco use among smokers are well described. Tobacco use generally begins during adolescence and continues through adulthood, sustained by addiction to nicotine. Smoking causes about four million deaths annually, mainly attributable to cardiovascular disease, lung cancer and other cancers, and chronic lung disease. Tobacco smoke is also an important source of indoor air pollution, contributing to a noxious environment, eye irritation, and unpleasant odour. Recent evidence demonstrates that ETS exposure increases risks of lung cancer and ischaemic heart disease among non-smoking adults.

The vast majority of children exposed to tobacco smoke do not choose to be exposed. Children’s exposure is involuntary, arising from smoking, mainly by adults, in the places where children live, work and play. Given that more than a thousand million adults smoke worldwide, WHO estimates that around 700 million, or almost half of the world’s children, breathe air polluted by tobacco smoke, particularly at home. The large number of exposed children, coupled with the evidence that ETS causes illness in children, constitutes a substantial public health threat.

This report concludes that the evidence of this harm to children is consistent and robust. Even if certain questions still require further research, there is more than sufficient evidence of harm to demand action to reduce children’s involuntary exposure to tobacco smoke. Furthermore, this involuntary and harmful exposure can also be seen as a human rights violation, given the provisions of Articles 6 and 24 of the 1989 United Nations Convention on the Rights of the Child. These articles create obligations for signatory governments to guarantee children’s right to life, to create an environment that maximizes the survival and development of children, and to implement measures ensuring and recognizing children’s right to the highest attainable standard of health. In addition, the Convention’s reporting guidelines include the requirement to identify risks to children from environmental pollution and report measures taken to reduce these risks.

The report addresses the threat to child health in three sections. The first summarizes the health effects of children’s exposure to tobacco smoke. The second addresses measurement issues central to action: measuring health impacts, children’s exposure and the economic burden of that exposure. The third turns to interventions and includes evidence of effective policies and programmes to reduce children’s exposure to tobacco smoke along with a framework for designing cost-effective responses to this threat. It is intended that this report will serve as an impetus for taking strong and immediate action to ensure that children around the world can grow up in an environment where their health is not compromised by being forced to breathe other people’s tobacco smoke.
III. Health effects of children’s exposure to tobacco smoke

This section presents evidence of the harmful impact of ETS exposure on children’s health. Table 1 summarizes previous conclusions as to that impact. The present report specifically addresses respiratory and middle ear disease, reduced foetal growth, sudden infant death syndrome (SIDS), neurodevelopmental/behavioural outcomes, cardiovascular effects, and childhood cancer.

Several adverse consequences of involuntary tobacco smoke exposure of children are well understood and beyond the scope of this report. Specifically, parental and peer smoking are critical and detrimental influences on future regular tobacco use. In addition, maternal smoking during pregnancy causes well-established, demonstrable harm by reducing birth weight and increasing infant mortality.

For young children, the major source of exposure to tobacco smoke is smoking by parents and other household members. Maternal smoking is typically the largest source of a child’s exposure because of the cumulative effects of exposure in utero and close proximity to the mother during early life. As children grow older, the relative contribution of other exposure sources, including smoking in public places, increases. Distinguishing between the effects of maternal smoking during pregnancy and the child’s exposure to both maternal and paternal tobacco smoke after birth can be difficult because children exposed to the first are usually exposed to the second as well. While identifying the specific source of tobacco smoke exposure may improve intervention targeting, cumulative tobacco exposure over a lifetime, whether in utero, from ETS exposure, or as an active smoker, causes both acute illness and chronic disease.

A. Respiratory health and middle ear disease

The effects of parental smoking on children’s lungs have been extensively described in the reports listed in Table 1. This section focuses on lower respiratory tract illness during infancy, asthma, respiratory symptoms, lung function, and middle ear disease, updating previously published quantitative syntheses of the evidence on parental smoking and respiratory health of children. Studying children whose fathers smoke and mothers do not can help separate postnatal from prenatal effects of tobacco smoke.

Lower respiratory tract illness

Parental smoking is an important cause of lower respiratory tract illnesses (e.g. croup, bronchitis, bronchiolitis, and pneumonia) during the first years of life. Of over 40 studies, all but one reported increased risks among children whose parents smoke. Pooling the studies’ results, children whose mothers smoke are estimated to have a 1.7-fold (95% CI = 1.6-1.9) higher risk of these illnesses than children of non-smoking mothers. Paternal smoking alone causes a 1.3-fold (95% CI = 1.2-1.4) increase in risk. This result is strong evidence for a causal role of ETS exposure, since it is uncomplicated by maternal smoking during pregnancy. Similar effects were seen for both wheezing and non-wheezing illnesses, and across studies done in communities and those done in hospitals. Furthermore, adjustment for confounding did not change the estimates, and evidence of exposure-response relationships (i.e. increasing risks of illness with increasing exposure to tobacco smoke) was frequently observed. Because lower respiratory tract illness is a common cause of childhood morbidity, small increases in average individual risk coupled with widespread exposure imply large population impacts.
Asthma and respiratory symptoms

Asthma is the most common chronic disease of childhood, and environmental factors play an important role in determining both onset and severity. Both asthma and respiratory symptoms (wheeze, cough, breathlessness and phlegm) are increased among children whose parents smoke, on the basis of over 60 studies of school-aged children. The pooled relative risks for either parent smoking range from 1.2 to 1.4. Evidence supporting a causal role for ETS exposure comes from the small but significant effects of paternal smoking when the mother does not smoke. As with lower respiratory tract illness, adjustment for confounding did not significantly change the results and exposure-response relationships have been described. Smaller relative risks in school-aged children compared to infants are consistent with reduced exposure.

Whereas there is clear evidence that tobacco smoke exposure causes non-allergic wheezing in early life, it probably does not cause the underlying asthmatic trait. In addition, parental smoking perinatally is not associated with allergic sensitisation. Nevertheless, ETS exposure causes exacerbations of symptoms in children with asthma. In many countries, this has led to the standard clinical practice of recommending avoidance of tobacco smoke for children with asthma.

Lung function

During childhood, the lung grows as height increases. Damage to the lung during its development may have lasting effects and reduce the lung’s reserve capacity. Substantial evidence demonstrates that maternal smoking during pregnancy causes sizeable adverse effects on neonatal lung mechanics. Maternal smoking is also associated with small deficits in lung function in school-aged children. However, distinguishing between residual effects of maternal smoking during pregnancy and childhood ETS exposure to explain these deficits is difficult.

Middle ear disease

Early childhood exposure to ETS is also causally associated with a major child health burden: acute and chronic middle ear disease. Over 40 studies with different designs have investigated effects of parental smoking across a range of outcomes from acute otitis media to surgery for glue ear. Pooled relative risks for these outcomes range from 1.2 to 1.4 and are statistically significant. No single study simultaneously addresses selection bias, information bias and confounding; where these have been investigated, however, the associations with parental smoking persist virtually unchanged. Few studies have compared the effects of maternal and paternal smoking and none have compared the effects of prenatal and postnatal exposure. Moreover, prognostic studies, showing improvement when the child has a smoke-free environment, and consideration of biologic mechanisms strongly suggest that postnatal ETS causes increased risk of middle ear disease in children.

Summary

Substantial benefits to children would arise if parents stopped smoking. While an important message must be for the mother to stop smoking before pregnancy, additional important benefits would result from postnatal cessation. Smoking by the father or other adults may have adverse effects during gestation and has definite effects after birth including increased relative risks of lower respiratory tract infection during infancy, and respiratory symptoms, middle ear disease among older children. Although these increased risks are modest, these are common health problems around the world. Thus small increases in risk translate into a substantial burden of disease for children arising from exposure to ETS.
Research directions

Further studies might be helpful to distinguish between the effects of in utero exposure to tobacco smoke and postnatal exposure. Studies in settings where women rarely smoke but tobacco smoke exposure from paternal and other sources is high would be particularly valuable. Where longitudinal studies are underway, analyses to investigate how changes in exposure are related to changes in outcome would be a valuable contribution. In addition, studies demonstrating the reversibility of adverse effects with reduced exposure to tobacco smoke, particularly in high-risk groups such as children with asthma and other health conditions exacerbated by tobacco exposure, would be useful.

B. Foetal Growth

The adverse effects of maternal smoking during pregnancy on foetal growth have been known for some time. Low birth weight (LBW, defined generally as less than 2500 grams) and intrauterine growth retardation (IUGR) are important risk factors for childhood morbidity and mortality. Over 30 studies have examined the effects of nonsmoking mothers’ exposure to ETS during pregnancy on foetal growth (e.g. by studying mean birth weight or LBW/IUGR) or preterm birth. Using mean birth weight as the outcome, studies from different countries and with different study designs have consistently found birth weights reduced among the offspring of nonsmoking women exposed to tobacco smoke during pregnancy. Many of the studies attempted to control for potential confounding factors. Pooling the results in a meta-analysis yields a mean reduction in birth weight ranging from 25 to 40 grams, depending on the subset of studies included. In addition, pooling estimates for LBW or IUGR yields a relative risk ranging from 1.2 to 1.4. Furthermore, relative risks and mean birth weight reductions were generally higher in higher exposure groups and in studies using a biomarker to measure exposure, and thus likely increasing the accuracy of exposure measurement. These results are supported by animal studies of sidestream smoke exposure. Thus, the weight of evidence indicates that ETS exposure in pregnant nonsmokers causes a small reduction in foetal growth.

At the population level, a small change in average birth weight could affect large numbers of infants because of the frequency of exposure. Furthermore, a shift in the birth weight distribution could have profound impacts on infants already at risk, moving them to a critically low birth weight.

Research directions

Additional studies of mean birth weight are unlikely to change the pooled measure of effect to any extent, but studies using a biomarker of exposure to increase the accuracy of exposure measurement and examine dose levels may still be warranted. Only a small number of studies have examined the role of ETS in increasing the risk of preterm birth, and additional studies would be valuable. In addition, research is needed to examine potentially more susceptible groups, such as those defined by maternal age or ethnicity.

C. Sudden infant death syndrome (SIDS)

There is sufficient evidence to conclude that maternal smoking causes a marked increase in SIDS. Almost 50 studies have examined this relationship and all indicate an increased risk. Since reductions in the prevalence of prone sleeping position, eight studies have examined maternal smoking and SIDS. The pooled unadjusted relative risk from these studies is approximately 5, indicating that infants of mothers who smoke have almost five times the risk of SIDS compared with infants of mothers who do not smoke. Adjustment for potential confounders lowers the risk
estimate; however, many studies over-adjust, e.g. by controlling for birth weight, resulting in an inappropriately low estimate of the risk. Pooling the adjusted results still yields a significantly increased risk of SIDS from maternal smoking.

With the available data, it is difficult to distinguish the effect of active maternal smoking during pregnancy from that of postnatal ETS exposure of the infant from smoking by the mother. While the mechanism for SIDS is unknown, the predominant effect from maternal smoking is generally attributed to in utero exposure of the foetus.

However, clear evidence for an ETS effect arises from six studies examining SIDS and paternal smoking where the mother is a nonsmoker. The pooled unadjusted relative risk from these studies is 1.4 which, though smaller than the effect seen for maternal smoking (RR = 4.7), still indicates a significant risk.

Research directions

Additional studies are unlikely to influence the pooled estimate of risk from maternal smoking substantially. Studies of nonsmoking mothers may clarify to what extent postnatal tobacco smoke exposure contributes to the risk of SIDS. Given the overwhelming evidence of maternal smoking’s effects in increasing the risk of SIDS, interventions to assist pregnant women to stop smoking should be given high priority.

D. Neurodevelopmental effects

When compared to children of nonsmokers, children of smokers perform more poorly in school. They also have lower scores in cognitive functioning tests - in particular, language and auditory processing - and have more behavioural problems, including conduct disorders, hyperactivity, and decreased attention spans. Cognitive and behavioural deficits in children have lifelong consequences and result in increased costs for education and social services.

Seventeen studies have addressed the effects of ETS exposure on child development and behaviour. Most have controlled for sociodemographic characteristics and some have demonstrated dose-response relationships, with greater deficits among children with higher exposures. In some studies, children’s postnatal ETS exposure and ETS exposure of nonsmoking mothers during pregnancy have been independently associated with subtle changes, albeit statistically significant, in child development and behaviour. Adverse effects resulting from children’s postnatal exposure to tobacco smoke are biologically plausible in light of evidence of altered brain development in animal models. Taken as a whole, however, these studies are difficult to interpret, in part due to the possible influence of uncontrolled confounding factors. Thus, the effects of prenatal and postnatal ETS exposure on cognition and behaviour remain unclear.

Research directions

Future studies need to focus on specific effects or outcomes associated with different periods of exposure. Particular attention should be given to controlling for essential explanatory variables such as parental intelligence, social class, and home environment.
E. Cardiovascular effects

In adults, active and passive smoking cause cardiovascular disease. In children, adolescents, and young adults, there is some evidence that ETS exposure may accelerate the evolution of cardiovascular disease. These studies document deleterious effects on oxygen transport, high-density lipoprotein (HDL) cholesterol, and possibly endothelial function.

In addition, the adverse effects of tobacco smoke exposure in adults in thrombosis, endothelial function, and low-density lipoprotein (LDL) oxidation can be plausibly inferred to occur in children. Studies of atherosclerosis in young adults indicate that exposure to tobacco smoke during childhood may also accelerate the progressive development of atherosclerosis. Evidence from animal models supports this initiation. However, the magnitude and clinical significance of these changes with respect to disease during adulthood are at present unknown. Neither the relationship of tobacco smoke exposure to vascular events during childhood nor the reversibility of these adverse effects has been assessed.

Research directions

Due to the limited number of studies in this area, further work on the evolution of atherosclerosis during youth and into young adulthood, with particular attention to tobacco smoke exposure, would be valuable. In addition, measurable cardiovascular endpoints of tobacco smoke exposure occurring in children and youth need to be developed. Such endpoints would also aid in evaluating reversibility of effects when exposure is discontinued. Focusing on studies of children, adolescents, and young adults with other major cardiovascular risk factors to examine whether tobacco smoke exposure enhances the effect of other risk factors would also add substantially to current knowledge.

F. Childhood cancers

Tobacco smoke, whether voluntarily or involuntarily inhaled, includes numerous carcinogens. Among adults, active smoking has been causally linked to cancers at a number of sites and exposure to ETS is an established cause of lung cancer among nonsmokers.

On the issue of childhood neoplasms, the pooled estimate of the relative risk of any childhood neoplasm from exposure to maternal smoking is 1.11 (95% CI = 1.00-1.23, based on 11 studies), and that for leukaemia is 1.14 (95% CI = 0.97-1.33, based on 8 studies). While fewer studies are available on paternal smoke exposure, associations are suggested for brain tumours and lymphomas. No consistent pattern of dose-response relationship has been found with either maternal or paternal smoking in the limited set of studies addressing this issue. Although known risk factors for childhood cancer do not appear to confound the observed associations, the small increases in risk might be the result of confounding by unknown factors. In most available studies, no distinction is made between preconceptional, in utero and postnatal exposure to parental smoke, making it difficult to assess the separate contribution of these periods of exposure. In conclusion, there is suggestive evidence linking exposure to tobacco smoke and childhood cancer.

Research directions

Future studies on exposure to tobacco smoke and childhood cancer should be based on large series of cases and should address the contribution of exposure preconceptionally, in utero, and postnataally.
G. Summary

- ETS exposure is causally associated with increased risks of lower respiratory tract illnesses, including bronchitis and pneumonia, in the first years of life.

- ETS exposure is a cause of chronic respiratory symptoms in school-aged children.

- ETS exposure increases the severity and frequency of symptoms in children with asthma.

- ETS exposure is causally associated with increased risk of acute and chronic middle ear disease.

- Maternal smoking is a cause of small reductions in lung function. The predominant effect may be from smoking during pregnancy.

- ETS exposure of nonsmoking women during pregnancy is a cause of small reductions in average birth weight.

- Maternal smoking is a major cause of SIDS. The predominant effect is believed to be from in utero exposure. There is also some evidence that postnatal ETS exposure contributes to the risk of SIDS.

- Parental smoking is associated with learning difficulties, behavioural problems, and language impairment in their children. There is some evidence that both ETS exposure to nonsmoking women during pregnancy and children’s postnatal ETS exposure may contribute to small impairments.

- ETS exposure is associated with physiological changes in children that may increase the risk of cardiovascular disease.

- There is suggestive evidence that parental smoking may increase the risk of some childhood cancers. However, the potential roles of preconceptional, in utero, and postnatal exposures are unknown.

Because many of these adverse health effects are common ailments and ETS exposure is very widespread, even small increases in average individual risk result in large population risks. In other words, a large number of cases of these illnesses can be attributed to ETS exposure. Furthermore, there may be susceptible subgroups of children that are at even higher individual risk, although this issue has not been well studied. Finally, while the effects may be difficult to measure, it is plausible that children’s exposure to ETS and consequent health effects may increase risks of further adverse health effects in adulthood.

IV. Measurement: health impact, exposure and economic impact

Estimating the public health impact of ETS exposure in children, the extent of that exposure, and the economic costs associated with it are essential to provide the information necessary for action to reduce the public health consequences of ETS on child health.
A. Measuring health impact

Health impact can be measured using attributable risk methods. These combine information on the extent to which disease outcomes are increased among children exposed to tobacco smoke with data on the number of children who are exposed in order to estimate the proportion of disease caused by tobacco smoke. For many of tobacco smoke’s effects on children, epidemiological evidence is sufficiently strong to estimate the attributable risk of disease. From a public health perspective, even if individual risks are only slightly increased, exposure to tobacco smoke nevertheless has a major health impact because almost half of the world’s children are exposed.

Measures of impact are needed to motivate and guide policy development and interventions to protect children from tobacco smoke exposure. Given limited resources, intervention priorities would ideally be established on the basis of measures of impact. Some tools are already available for this purpose but further development is encouraged, particularly of generally applicable models. At the most basic level, surveys of tobacco use including questions to assess children’s household exposure to tobacco smoke are needed.

B. Measuring exposure

Children’s involuntary exposure to tobacco smoke can be measured in several ways: air sampling, uses of biomarkers, and application of survey instruments. Air sampling involves measuring concentrations of such markers as respirable suspended particulates or nicotine. Biomarkers involve measuring concentrations of smoke components in biological materials, most commonly cotinine in saliva or urine. Both cotinine measurement and air sampling are limited to describing current exposure. Biomarkers may also be valuable to validate questionnaire responses.

Numerous studies have established that young children’s exposure to tobacco smoke comes mainly from smoking within the home, especially by parents. Maternal smoking has a greater impact on children’s measured cotinine levels than paternal smoking. Smoking by other household members and child care personnel accounts for a smaller proportion of children’s total exposure.

From a survey design perspective, this point is critical, because children’s exposure can be measured with a few simple questions about parental smoking. Three kinds of surveys are generally used for this purpose: household, school-based and general surveys. In household surveys, both parental smoking and the presence of children can be directly measured. In school-based surveys, children can accurately report whether or not their parents smoke but are less able to give valid reports of parental cigarette consumption. Surveys of smoking in the general adult population may also be useful, as smoking prevalence among all adults between the ages of 20 and 50 years is similar to that among parents with children.

In most countries, particularly those where people are generally not aware of tobacco smoke’s harmful effects on children’s health, parental smoking status will reflect children’s exposure, as smoking parents are unlikely to minimize their children’s exposure by not smoking in their presence. However, in countries where concerns about children’s exposure are growing, more parents, including smokers, are initiating smoking policies in the home and reporting that they generally restrict smoking to outdoors. In the future, therefore, parental smoking status by itself may become a less valid indicator and information regarding self-reported behaviours to protect children will be needed. Moreover, these self-reports will need to be validated by biomarkers of children’s actual exposure to offset socially desirable but inaccurate questionnaire responses.
Estimating the public health burden of children’s exposure to tobacco smoke requires accurate data on the number of children exposed, on a country-by-country basis. Based on present estimates of global cigarette smoking prevalence, WHO estimates that almost half of all children worldwide live in a home with at least one smoker. However, accurate country-level estimates are lacking, and few countries have data tracking the proportion of children living in smoking households over time.

WHO has already developed standardized questionnaires to measure adult smoking prevalence. Modifying them to include items enquiring specifically about household smoking and any rules adopted to protect children would be a potentially cost-effective way of gathering this crucial information. In addition to questionnaire-based surveys, cross-national surveys, incorporating a biomarker such as cotinine, in as many cultures, climates and regions as possible would quantify the extent of exposure worldwide and determine the significance of parental smoking as a predictor of dose across countries and cultures. If repeated over time, such a series would establish trends within and across countries in children’s actual exposure to tobacco smoke, taking into account both changes in cigarette smoking prevalence and the effects of measures adopted to protect children from exposure.

C. Measuring economic impact

Estimating costs of children’s exposure to tobacco smoke is important in evaluating tax and fiscal policy, managing public and private health care costs, and evaluating programmes to induce smokers to stop smoking or reduce the amount they smoke. Governments can use economic impact estimates as they consider policy and programme choices, since cost-benefit analyses may contribute to decision-making. Economic impact estimates are also useful from a health services perspective, because they highlight the savings if adults stop smoking or otherwise reduce exposure of children to tobacco smoke.

Costs arise from the established adverse health effects of children’s exposure to tobacco smoke. Tobacco smoke exposure contributes to morbidity in children, increasing short-term direct health costs. These costs are largely preventable, because the behaviour of adults who are exposing infants and children to tobacco smoke can be altered, yielding direct savings for those who pay for health care services, whether government, insurers, or individuals.

Morbidity costs accrue from direct outlays for health care for children experiencing middle ear infections, lower respiratory tract illness and asthma, all of which are increased among children exposed to tobacco smoke. Children with these conditions will require more services from physicians, more prescription drugs and more hospitalizations. Their families may well suffer indirect costs in the form of time spent seeking care.

Indirect costs also arise from the additional mortality of children exposed to tobacco smoke. Economists typically estimate these costs in terms of the value of life lost. Specifically, maternal smoking during pregnancy or exposure of the infant to smokers causes additional deaths from sudden infant death syndrome (SIDS). Although the predominant tobacco exposure of an infant dying of SIDS occurs in utero as a result of maternal smoking during pregnancy, risk of death appears to be elevated by exposure to tobacco smoke after birth, and death as an infant entails a substantial loss of years of life.

Using mortality and morbidity rates, together with estimates of the increased rates attributable to tobacco smoke, researchers have measured the costs of children’s exposure to tobacco smoke, mostly in developed countries. These studies have generally estimated the extra costs associated with health care services related to the childhood conditions discussed in
section III of this report. While these studies are limited in number and the cost estimates vary, annual health care costs attributable to children’s involuntary exposure to tobacco smoke in the United States alone are estimated at approximately US$ 1 000 million (1997 dollars). If the effects of active maternal smoking in reducing birth weight are included, this figure more than doubles. Furthermore, the long-term costs of special educational or other services for those with developmental impairments secondary to low birth weight are not included in this estimate. Considering indirect costs would further increase the estimated costs.

D. Extrapolating to developing countries

The majority of studies measuring costs of children’s exposure to tobacco smoke have been in developed countries. For developing countries, these costs, while likely to be significant, may be affected by country-specific conditions. The magnitude of costs in any country depends not only on the levels of children’s exposure and rates of disease, but also on the monetary values placed on health care and other resources. If a country lacks a well developed health care system, costs will appear artificially low as individuals cannot have access to care. As less developed countries develop and their health systems evolve, costs will become more real and are likely to grow from their current levels as smoking prevalence rises in these countries, more children are affected, and services become available to offer them treatment for the illnesses in which tobacco smoke is implicated.

E. Summary

The epidemiological evidence indicates that the effects of children’s exposure to tobacco smoke are significant. Measuring these exposures in developing countries and monitoring the health effects of tobacco smoke in all countries continues to be a priority. While developing countries may not at first seek to precisely estimate the costs of children’s exposure to tobacco smoke, they will need to monitor levels of children’s exposure over time. In this manner they will have an indication of the direction of change in adverse health effects and health care costs borne by their citizens.

V. Interventions to eliminate children’s exposure to environmental tobacco smoke

A. The need for action

In view of the significant health risks posed to children by ETS, public health policies are needed to protect this vulnerable population. The aim of such policies is to ensure the right of every child to grow up in an environment free of tobacco smoke, in accordance with the United Nations Convention on the Rights of the Child.

The tobacco industry has deliberately misrepresented the extent of the harms of passive smoking, and has undertaken a campaign to discredit the scientific findings and confuse the public. Yet the evidence brought together in this report demonstrates an overwhelming scientific consensus about the health risks to children from involuntary exposure to tobacco smoke. These risks are avoidable and can often be addressed simply and without great expense. This section recommends a range of interventions and outlines the policy tools needed to eliminate childhood exposure to tobacco smoke.
B. Strategies for Reducing Children’s Exposure to Tobacco Smoke

Strategies to prevent children’s involuntary exposure to tobacco smoke fall into two general groups: a primary focus on eliminating children’s contact with the tobacco smoke of others, and secondary benefits from reducing the prevalence and consumption of tobacco products. Protecting children from tobacco smoke is essential to comprehensive tobacco control, which includes preventing the initiation of smoking, eliminating involuntary exposure to tobacco smoke, and supporting smoking cessation. The following key points should be considered in any intervention programme:

- Successfully eliminating children’s involuntary exposure to tobacco smoke requires a comprehensive health promotion effort with two main thrusts: legislation and education.

- Legislation encompasses all regulatory approaches to controlling where and when people can smoke. Education includes public information, debate, and advocacy, all designed to encourage behaviour change. These two approaches are complementary, and the appropriate mix of education and legislation will depend on the local and cultural conditions of the particular country or region.

- Governments have a responsibility to legislate to control exposure to tobacco smoke in public spaces. Legislation to ban smoking in places children frequent is an important first step. These include schools, child care and health care facilities, and places where young people gather, including sports clubs, restaurants (especially fast food outlets), shopping centres and public transport. Smoking restrictions in the workplace are important to protect pregnant women and minors.

- Legislation is of limited value in reducing exposure in private homes. Educational strategies, including education about the risks to children from ETS exposure and steps to eliminate exposure, are likely to be more effective in these settings. Educational programmes must strategically target household decision-makers, either directly or indirectly, such as through other family members. Similar strategies are needed to protect children from ETS exposure in cars.

- Effective education may ease implementation of legislation but does not do away with the need for enforcement of legislation.

- Health warnings on cigarette packages advising smokers that their tobacco smoke is injurious to children and others should be included in the range of required messages.

- Health care workers are an important component of any education strategy as they can counsel children about avoiding smoke and adults about the importance of smoke-free air for children. This role is particularly critical when young patients are already suffering from an ETS-induced illness. Training for physicians and other health professionals should include an adequate attention to health impacts of ETS.

- Skilful use of mass media, based on principles of communication science, coupled with advocacy that links government public health policy with efforts by health professionals and grassroots groups, is essential to the success of any educational campaign.

- Particular attention should be given to interventions to assist pregnant women to stop smoking. Preventing them from relapsing and inducing their partners to stop smoking will increase the likelihood of a smoke-free environment for children. Training for health professionals who work with pregnant women is crucial.
A secondary benefit of reduced tobacco consumption is reduced exposure of children to tobacco smoke. WHO and other international and intergovernmental bodies recommend measures such as: 1) banning all advertising and promotion of tobacco products, 2) increasing prices beyond inflation, 3) regulating tobacco products, and 4) prohibiting sales to minors as steps towards reducing overall consumption.

Interventions should be monitored and evaluated from the perspective of both efficacy and cost-effectiveness.

VI. Conclusions and recommendations

⇒ Almost half of the world’s children are involuntarily exposed to tobacco smoke.

⇒ Exposure to environmental tobacco smoke causes increased risks of several illnesses in children and may increase the risk of death from sudden infant death syndrome (SIDS). Exposure of nonsmoking women to environmental tobacco smoke during pregnancy also causes reductions in fetal growth.

⇒ Children do not choose this exposure. Their right to grow up in an environment free from tobacco smoke must be safeguarded through actions by national and local governments, voluntary bodies, community leaders, health workers, educators and parents.

⇒ Reducing children’s exposure to tobacco smoke requires a two-pronged strategy: reducing smoking in spaces where children live, play, and learn, and reducing overall tobacco consumption.

⇒ Effective public policy is important to protect this vulnerable group.

⇒ To maximize impact, policies to protect children from tobacco smoke exposure should be implemented as part of comprehensive tobacco control programmes.

⇒ Legislated restrictions on smoking in public places and the workplace will protect nonsmokers in general and vulnerable groups such as children and pregnant women in particular.

⇒ Young children’s greatest exposure to tobacco smoke occurs at home. Increasing the percentage of tobacco-free homes is generally not amenable to legislation but can be achieved by a combination of mass media campaigns and smoking restrictions in public places and the workplace.

⇒ Programmes to raise awareness and motivate behaviour change among pregnant women and their partners are needed to reduce the harmful effects of prenatal and postnatal exposure to tobacco smoke.

⇒ Interventions through legislation and education need to be culturally specific.

⇒ Surveys, using biomarkers where possible, will be necessary to plot changes in children’s involuntary exposure and monitor the effectiveness of interventions.
<table>
<thead>
<tr>
<th>Lower respiratory tract infections<sup>2</sup></th>
<th>Middle ear disease</th>
<th>Chronic respiratory symptoms</th>
<th>Asthma</th>
<th>Lung function</th>
</tr>
</thead>
<tbody>
<tr>
<td>More frequent in children whose parents smoke</td>
<td>Suggestive evidence that middle ear effusion<sup>3</sup> is more common in children whose parents smoke</td>
<td>More frequent in children whose parents smoke</td>
<td>Not reviewed</td>
<td>Small decrements in children whose parents smoke</td>
</tr>
<tr>
<td>ETS is causally associated with increased risk</td>
<td>ETS is causally associated with increased prevalence of middle ear effusion</td>
<td>ETS is causally associated with increased prevalence</td>
<td>ETS is causally associated with additional episodes and increased severity of symptoms in asthmatic children; suggestive evidence that ETS causes new cases of asthma</td>
<td>ETS is causally associated with small reductions</td>
</tr>
<tr>
<td>ETS is causally associated</td>
<td>ETS is causally associated</td>
<td>ETS is causally associated</td>
<td>ETS is causally associated with asthma exacerbation and induction</td>
<td>Suggestive evidence of causal association with ETS</td>
</tr>
<tr>
<td>ETS has cause-and-effect relationship</td>
<td>Causal link between ETS and middle ear effusion</td>
<td>Not reviewed</td>
<td>Causal relationship between ETS and asthma</td>
<td>Association with ETS exposure</td>
</tr>
<tr>
<td>ETS is a cause</td>
<td>Parental smoking causes acute and chronic middle ear disease</td>
<td>Convincing evidence that parental smoking increases risk</td>
<td>ETS is a cause of asthma attacks</td>
<td>Not reviewed</td>
</tr>
</tbody>
</table>

¹ See bibliography for details of source.
² In infants and very young children.
³ i.e., fluid in the middle ear, or “glue ear”.
⁴ The report also concluded that exposure of pregnant nonsmokers to ETS is causally associated with reduced foetal growth and that there is suggestive evidence that ETS is causally associated with adverse impacts on cognition and behaviour.
⁵ The report also concluded that there is suggestive evidence that exposure of pregnant nonsmokers to ETS causes reduced foetal growth.
VII. Background Reading & Additional Sources

Further details and full text available at:

California Environmental Protection Agency Office of Environmental Health Hazard Assessment. Health Effects of Exposure to Environmental Tobacco Smoke. (1997)

Further details and full text available at:
http://www.oehha.org/archive/tobacco_smoke.html

Further details at:
http://www.official-documents.co.uk/document/doh/tobacco/contents.htm

Further details of this and other EPA work on ETS at:
http://www.epa.gov/ncea/smoking.html
http://www.epa.gov/iaq/ets.html

Background Papers

The background papers prepared for the consultation are available as a WHO Technical Document WHO/NCD/TFI/99.11 or can be found on WHO’s Tobacco Free Initiative website:

http://www.who.int/toh

Adverse Health Effects

Synthesis: The Health Effects of Tobacco Smoke Exposure on Children. J. Samet, Department of Epidemiology School of Hygiene and Public Health Johns Hopkins University, Baltimore, MD, USA

Association of in utero or Postnatal Environmental Tobacco Smoke Exposure and Neurodevelopmental and Behavioral Problems in Children. B. Eskenazi, School of Public Health, University of California, Berkeley; R. Castorina, School of Public Health, University of California, Berkeley.

Effects of Maternal and Paternal Smoking on Children’s Respiratory Health. D. Cook, Department of Public Health Sciences St. Georges Hospital Medical School, London and D. Strachan.
Effects of Passive Smoking on the Cardiovascular System in Children and Adolescents.
S.S. Gidding, Pediatrics and Preventive Medicine, Northwestern University Medical School; Attending Cardiologist, Children's Memorial Hospital, Chicago, Il.

Parental Tobacco Smoke and Childhood Cancer. P. Boffetta, International Agency for Research, Lyon, France; J. Trédaniel, Saint Louis Hospital, Paris, France; A. Greco, University of Lyon, France.

Prenatal Exposure to Environmental Tobacco Smoke and Fetal Health. G.C. Windham, Reproductive Epidemiology Section, Division of Environmental and Occupational Disease Control, Department of Health Services, Oakland, CA.

Smoking and Sudden Infant Death Syndrome. E.A Mitchell, University of Auckland, Auckland, New Zealand; Milerad, Department of Women and Child Health, A. Lindgren, Children Hospital at Karolinska Institute, Stockholm, Sweden

Exposure to ETS and Public Health Impact

Children’s Exposure to Passive Smoking: Survey Methodology and Monitoring Trends.
M.J Jarvis, Health Behaviour Unit, Department of Epidemiology and Public Health, University College, London.

Magnitude of Smoking Attributable Costs. K. Adams, Rollins School of Public Health, Emory University, Atlanta, GA.

Intervention Strategies

Risk Communication, Children’s Health, and Environmental Tobacco Smoke.
V.T. Covello, Director, Center for Risk Communication, New York, New York

Risk Perception and Communication: Environmental Tobacco Smoke and Child Health.
W. Leiss, Eco-Research Chair in Environmental Policy, School of Policy Studies, Queen’s University, Kingston, Ontario, Canada.

Theories of Behavior Change in Relation to Environmental Tobacco Smoke Control to Protect Children. R. Borland, Centre for Behavioural Research in Cancer, Anti Cancer Council of Victoria. Victoria, Australia.
VIII. Annex 1

Extracts of the 1997 Declaration of the Environment Leaders of the Eight on Children’s Environmental Health

Miami, May 1997

“Environmental Tobacco Smoke: Children exposed to environmental tobacco smoke are more likely to suffer from reduced lung function, lower respiratory tract infections and respiratory irritations. Asthmatic children are especially at risk. Many of these symptoms lead to increased hospitalizations of children.

We affirm that environmental tobacco smoke is a significant public health risk to young children and that parents need to know about the risks of smoking in the home around their young children. We agree to cooperate on education and public awareness efforts aimed at reducing children’s exposure to environmental tobacco smoke.”

Implementation Actions on Protecting Children’s Health and Environment which the Environment Leaders of the Eight have agreed to promote within their governments and countries:

“Environmental Tobacco Smoke: Convene a scientific conference, through WHO or another appropriate scientific organization, to synthesize and share the latest scientific information on risks to infants and children from environmental tobacco smoke and compile information on the most effective education strategies concerning exposure to children.”
IX. List of Participants

Professor Kathleen Adams*
Rollins School of Public Health
Emory University
1518 Clifton Rd. N.E.
Atlanta, GA 30322 USA
Tel: 1 404 727 9370
Fax: 1 404 727 9198
Email: eadam01@sph.emory.edu

Dr Jawad Al-Lawatia
Non-Communicable Diseases Section
Ministry of Health
P.O. Box 393
Muscat, Sultanate of Oman
Tel: 968 69 6187
Fax: 968 69 5480
Email: jallawat@gto.net.com

Mr Clive Bates
Director
Action on Smoking and Health (ASH)
16 Fitzhardinge Street
GB-London W1H9PI, United Kingdom
Tel: 44 171 224 0743
Fax: 44 171 224 0471
Email: clive.bates@dial.pipex.com

Professor David Baum
President, Royal College of Paediatrics and Child Health
50 Hallam Street
GB-London W1N 6DE, United Kingdom
Tel: 44 171 307 5600
Fax: 44 171 307 5652
Email: enquiries@rcpch.ac.uk

Dr Roberto Bertollini
Director
European Centre for Environment and Health
Via Francesco Crispi 10
I-00187 Rome, Italy
Tel: 39 6 487 7530/1
Fax: 39 6 487 7599
Email: rbe@who.it

Dr Paolo Boffetta*
Chief, Unit of Environmental Cancer Epidemiology
International Research on Cancer (IARC)
150 cours Albert-Thomas
F-69372 Lyon cedex 08, France
Tel: 33 472 73 84 85
Fax: 33 472 7383 42
Email: boffetta@iarc.fr

Mr Keith Bolling
Health Education Authority (HEA)
Trevelyan House
30 Great Peter Street
GB-London SW1P 2HW, United Kingdom
Tel: 44 171 413 1837
Fax: 44 171 413 2044
Email: keith.bolling@hea.org.uk

Mr Francesco Cicogna
Senior Medical Officer
Department of Prevention
International Relations Office
Ministry of Health
Piazzale dell'Industria 20
I-00144 Rome, Italy
Tel: 39 6 59 94 26 26
Fax: 39 6 59 64 77 49

* Provided a background paper for the Consultation.
Professor Derek Cook*
Professor of Epidemiology
Department of Public Health Sciences
St. Georges Hospital Medical School
Cranmer Terrace
GB-London SW17 ORE, United Kingdom

Tel: 44 181 725 5490
Fax: 44 181 7253584
Email: d.cook@sghms.ac.uk

Dr Vincent Covello*
Director, Center for Risk Communication
39 Claremont Avenue, Suite 71
New York, NY 10027, USA

Tel: 1 212 222 7841
Fax: 1 212 749 3590

Professor Elif Dagli
Head, Dept. of Paediatric Pulmonology
Marmara University Hospital
Altunizade 81190
Istanbul, Turkey

Tel./Fax: 90 216 326 6551
Email: edagli@superonline.com

Dr Bruce Dick
Senior Adviser
Youth Health, Health Section
United Nations Children’s Fund
Three United Nations Plaza
New York, NY 10017, USA

Tel: 1 212 824 6324
Fax: 1 212 824 6465
Email: bdick@unicef.org

Professor Gerard Dubois*
Chef du Service d’Evaluation Médicale
Hôpital Nord
Place V. Pauchet
F-80054 Amiens, France

Tel: 33 322 66 81 97
Fax: 33 322 66 81 98
Email: pr.g.dubois@wanadoo.fr

Professor Erik Dybing
Department Director
Dept. of Environmental Medicine
National Institute of Public Health
P.O. Box 4404 Torshov
N-0403 Oslo, Norway

Tel: 47 22 04 26 37
Fax: 47 22 04 26 86
Email: erik.dybing@folkehelsa.no

Dr Brenda Eskenazi*
Professor of Epidemiology and
Maternal and Child Health
Program Chair, Maternal and Child Health
School of Public Health, University of California
Berkeley, CA 94720, USA

Tel: 1 510 642 3496
Fax: 1 510 642 5815
Email: eskenazi@uclink4.berkeley.edu

Ms Elissa Feldman
Associate Director, Indoor Environments Division
Office of Air & Radiation
Environmental Protection Agency
Mailcode 8623D
Washington, D.C. 20460, USA

Tel: 1 202 564 9316
Fax: 1 202 565 2071
Email: feldman.elissa@epamail.epa.gov
Dr Lawrence Fishbein
Independent Consultant
4320 Ashford Lane
Fairfax, VA 22032, USA
Tel: 1 703 764 5232
Fax: 1 703 323 8088
Email: lfishbein@erols.com

Dr Christine Gafner
Project Manager
Passive Smoking Global Programme Tobacco Prevention (PROGEF)
Swiss Federal Office of Public Health
Neufeldstrasse 134
CH-3012 Berne, Switzerland
Tel: 41 31 302 9843
Fax: 41 31 302 9841
Email: christine.gafner@milprog.ch

Dr Samuel S. Gidding
Assoc. Prof. of Pediatrics and Preventive Medicine
Northwestern University Medical School
Children’s Memorial Hospital
2300 Children’s Plaza/Box 21
Chicago, IL 60614, USA
Tel: 1 773 880 4553
Fax: 1 773 880 8111
Email: s-gidding@nwu.edu

Dr Prakash C. Gupta
Senior Research Scientist
Tata Institute of Fundamental Research
Homi Bhabha Road
Colaba, Mumbai
Bombay 400 005, India
Tel: 91 22 215 2317
Fax: 91 22 215 2110
Email: pcgupta@tifrvax.tifr.res.in

Dr Paul Harrison
Acting Director
MRC Institute for Environment and Health
University of Leicester
94 Regent Road
GB-Leicester LE 1 7DD, United Kingdom
Tel: 44 116 223 1611
Fax: 44 116 223 1601
Email: ieh@le.ac.uk

Dr Hou Pei-sen
Director, Division of Health Education
Department of Grass-roots Health Service
& Maternal and Child Health
Ministry of Health
44 Hou hai Beiyan
Beijing 100725, China
Tel: 86 10 6401 5619
Fax: 86 10 6401 4332 or 4331
Email: houps@mx.cei.gov.cn

Mrs Maryke Huydts
Secretary General
European Union of Nonsmokers
Boite Postale 12
L-8001 Strassen, Luxembourg
Tel: 352 31 1637
Fax: 352 31 1637

Dr Martin Jarvis
Department of Epidemiology & Public Health
University College of London
2-16 Torrington Place
GB-London WC1E 6BT, United Kingdom
Tel: 44 171 209 6626
Fax: 44 171 813 28 48
Email: jarvis@globalink.org
Dr Jennifer Jinot
Scientific Officer
Office of Research and Development
National Center for Environmental Assessment
US Environmental Protection Agency (EPA)
Mailcode 8623D
Washington, D.C. 20460, USA

Dr Beverly Kingsley
Office on Smoking and Health
Centers for Disease Control and Prevention
4770 Buford Highway MS K-50
Atlanta, GA 30341-3724, USA

Dr J. Kühr
Universitäts-Kinderklinik
Mathildenstr. 1
D-79106 Freiburg, Germany

Dr Michal Krzyzanowski
Environmental Epidemiologist
WHO European Centre for Environment & Health
Bilthoven Division
PO Box 10
NL-3730 AA Bilthoven, The Netherlands

Professor Lam Tai Hing
Department of Community Medicine
University of Hong Kong
Patrick Manson Building, South Wing
7 Sassoon Road
Hong Kong, China

Dr Tony Lee
Paediatrician/Primary Care Physician
Representing: The Association for Nonsmokers Rights (ANSR)
“Les Salines”
Le Vallon, St. Martins
Guernsey, Channel Islands, United Kingdom

Mr William Long
Environmental Protection Specialist
Office of Radiation and Indoor Air
US Environmental Protection Agency
Mailcode 8623D
Washington, D.C. 20460, USA

Dr Ana Maria Menezes
Epidemiologist
Professor of Pneumology and Epidemiology
Universidade Federal de Pelotas
CP 464
96001-970 Pelotas, RS, Brazil
Dr Dawn Milner
Senior Medical Officer
Health Promotion Division, room 429
Department of Health
Wellington House, Waterloo Road
GB-London SE1 8UG, United Kingdom
Tel: 44 171 972 4026
Fax: 44 171 972 4218
Email: dmilner@doh.gov.uk

Dr Ed Mitchell
Department of Paediatrics
University of Auckland
Private Bag 92019
Auckland, New Zealand
Tel: 64 9 373 7599 ext. 6431
Fax: 64 9 373 7486
Email: e.mitchell@auckland.ac.nz

Mr Kyoichi Miyazaki
Director, Can Do Harajuku (Counseling Center)
Secretary General, Japan Association Against Tobacco (JAAT)
1-11-1, Jingumae, Shibuya-ku
Tokyo 150-0001, Japan
Tel: 81 3 3423 2501
Fax: 81 3 3423 2528
Email: cando@interlink.or.jp

Dr Jeanne Moorman
Air Pollution and Respiratory Health Branch
National Center for Environmental Health
Centers for Disease Control and Prevention
4770 Buford Highway M/S F-39
Atlanta, GA 30341, USA
Tel: 1 770 488 7348
Fax: 1 770 488 3507
Email: zva9@cdc.gov

Dr Alfredo Morabia
Division of Clinical Epidemiology
Geneva University Hospital
24 rue Micheli-du-Crest
CH-1211- Geneva 14, Switzerland
Tel: 41 22 372 9552
Fax: 41 22 372 9565
Email: alfredo.morabia@hcuge.ch

Ms Inger S. Nordback
Representative to the United Nations Soroptimist International
Chemin du Jura 8
CH-1299 Crans, Switzerland
Tel: 41 22 776 1138
Fax: 41 22 776 8838
Email: nordback@span.ch

Dr Yoneatsu Osaki
Chief, Communicable Diseases Section
Department of Epidemiology
National Institute of Public Health
4-6-1, Shirokane-dai, Minato-ku
Tokyo 108-0071, Japan
Tel: 81 3 3441 7111
Fax: 81 3 3446 7164
Email: osakiy@iph.go.jp

Dr A.V. Pavlov
Counsellor
Permanent Mission of the Russian Federation to the UN Office in Geneva
Avenue de la Paix
CH-1211 Geneva 20, Switzerland
Tel: 41 22 734 2952
Fax: 41 22 734 4044
Email: mission.russianzties@itu.int
Dr W.S. Rickert
President
Labstat International
262 Manitou Drive, Unit 5
Kitchener, Ontario N2C 1L3, Canada
Tel: 1 519 748 5409
Fax: 1 519 748 1654
Email: wrickert@labstat.com

Professor Jonathan Samet
Department of Epidemiology
School for Hygiene and Public Health
Johns Hopkins University
615 North Wolfe Street, Suite W6041
Baltimore, MD 21205-2179, USA
Tel: 1 410 955 3286
Fax: 1 410 955 0863
Email: jsamet@jhsph.edu

Dr Annie Sasco
Chief, Unit of Epidemiology for Cancer Prevention
International Agency for Research on Cancer (IARC)
150, Cours Albert Thomas
F-69372 Lyon Cédex 08, France
Tel: 33 4 72 73 84 12
Fax: 33 4 72 73 83 42
Email: sasco@iarc.fr

Dr Martha Shimkin
Office of International Affairs
US Environmental Protection Agency
Mailcode 8623D
Washington, D.C. 20460, USA
Tel: 1 202 564 6453
Fax: 1 202 565 2409
Email: shimkin.martha@epamail.epa.gov

Dr Maylene Shung King
Senior Policy Researcher
Child Health Unit
46 Sawkins Road
Rondebosch 7700, South Africa
Tel: 27 21 68 54 103 ext. 268
Fax: 27 21 68 95 403
Email: maylene@rmh.uct.ac.za

Dr Jean Simos
Conseiller scientifique
Direction générale de la santé cantonal
Ave. Beau-Séjour 24
CH-1206 Geneva, Switzerland
Tel: 41 22 839 9830
Fax: 41 22 839 9850
Email: simos-j@je-dass.etat-ge.ch

Mr Ruben Israel
Head, GLOBALink
International Union Against Cancer
3 rue du Conseil-Général
CH-1205 Geneva, Switzerland
Tel: 41 22 809 1855
Fax: 41 22 809 1810
Email: israel@uicc.ch

Dr Rose Vaithinathan
Director
School Health Service
Institute of Health
Ministry of Health
3 Second Hospital Ave
Singapore 168937, Singapore
Tel: 65 435 3534
Fax: 65 438 7266
Email: rose_vaithinathan@moh.gov.sg
Dr Harri Vertio
Director
Health Promotion Centre
Helsinki, Finland

Tel: 358 9725 30300
Fax: 358 9725 30320
Email: harri.vertio@health.fi

Dr Gayle Windham
Reproductive Epidemiology Section
California Department of Health Services
1515 Clay St., Suite 1700
Oakland, CA 94612, USA

Tel: 1 510 622 4450
Fax: 1 510 622 4505
Email: gwindham@hw1.cahwnet.gov

Professor Witold Zatonski
Head, Department of Epidemiology and Cancer Prevention
M. Sklowdowska-Curie Memorial Cancer Centre and Institute of Oncology
5 Roentgena St.
P-02-781 Warsaw, Poland

Tel./fax: 48 22 643 9234 or 643 9792
Email: zatonskiw@coi.waw.pl

Unable to Attend

Mr Carlos Corvalan
Protection of the Human Environment
Occupational and Environmental Health

Email: corvalanc@who.ch

Dr Murray Kaiserman
Acting Director, Office of Tobacco Control
Health Canada
Brooke Claxton Bldg., 7th floor
PL0907D1
Tunney's Pasture
Ottawa, Ontario, K1A 0K9, Canada

Tel: 1 613 941 2423
Fax: 1 613 941 1551
Email: murray_kaiserman@hc-sc.gc.ca

Dr William Leiss*
Environmental Policy Unit, Rm. 418
School of Policy Studies
Queen's University
Kingston, Ontario K7L 3N6, Canada

Tel: 1 613 545 6832
Fax: 1 613 545 6630
Email: leissw@post.queensu.ca

Dr Yumiko Mochizuki-Kobayashi
Community Health, Health Promotion and Nutrition Division, Health Service Bureau
Ministry of Health and Welfare
1-2-2, Kasumigaseki, Chiyoda-ku
Tokyo 100-8045, Japan

Tel: 81 3 3595 2190
Fax: 81 3 3503 8563
Email: YM-OCL@mhw.go.jp

Dr Donald Sharp
Office of Smoking and Health (K50)
National Center for Chronic Disease, Prevention and Health Promotion
Centers for Disease Control and Prevention (CDC)
4770 Buford Highway NE
Atlanta, GA 30341-3724, USA

Tel: 1 770 488 5843
Fax: 1 770 488 5848
Email: das8@cdc.gov
Ms Mary Smith
Director, Indoor Environments Division
Office of Air & Radiation
Environmental Protection Agency
Mailcode 8623D
Washington, D.C. 20460, USA
Tel: 1 202 564 9370
Fax: 1 202 565 9039
Email: smith.maryt@epamail.epa.gov

Dr David Strachan
Department of Public Health Sciences
St. George’s Hospital Medical School
Cranmer Terrace
GB-London SW17 ORE, United Kingdom
Tel: 44 181 725 5429
Fax: 44 181 725 3584
Email: d.strachan@sghms.ac.uk

WHO Secretariat

Dr Nigel G. Bruce
Division of Child Health and Development
Email: brucen@who.ch or Ngb@liv.ac.uk

Mr Neil Collishaw
Tobacco Free Initiative (TFI)
Email: collishawn@who.ch

Ms B.J. Ferguson
Health Systems and Community Health
Child and Adolescent Health and Development
Email: fergusonb@who.ch

Dr Matthew Hodge
Tobacco Free Initiative
Email: hodgem@who.ch

Professor Judith Mackay
Policy Advisor
Tobacco Free Initiative
Hong Kong
Email: jmacay@pacific.net.hk

Mrs Nejma Macklai
Tobacco Free Initiative
Email: macklain@who.ch

Dr Desmond O’Byrne
Health Promotion & Health Education
Email: obyrned@who.ch

Dr D. Schwela
Protection of the Human Environment
Occupational and Environmental Health
Email: schwelad@who.ch

Dr E.M. Smith
Assessment of Risk and Methodologies
Programme for the Promotion of Chemical Safety
Email: smithem@who.ch

Dr G. Weiler
Substance Abuse
Advocacy and Capacity Development
Email: weilerg@who.ch

Dr Derek Yach
Project Manager
Tobacco Free Initiative
Email: yachd@who.ch
Ms Barbara Zolty
Tobacco Free Initiative

Email: zoltyb@who.ch