Water Recreation and Disease
Water Recreation and Disease

Plausibility of Associated Infections: Acute Effects, Sequelae and Mortality

Kathy Pond
Contents

Foreword ix
Acknowledgements xii
List of Acronyms and Abbreviations xiv
Executive Summary xvi

1 Introduction 1
1.1 Background 1
1.2 Evidence of adverse health outcomes associated with recreational water use 4
1.3 Severe outcomes 8
 1.3.1 Infections with potentially severe acute symptoms 9
 1.3.2 Evidence for sequelae of waterborne diseases 9
 1.3.3 Severe outcomes in special populations 12
1.4 Management of severe illnesses 13
1.5 Summary 13
1.6 Document overview 14
References 14
2 Hazard Identification and Factors Related to Infection and Disease

2.1 Hazard identification
- 2.1.1 Epidemiology
- 2.1.2 Quantitative microbial risk assessment

2.2 Factors influencing hazard encounter and infection
- 2.2.1 Water contact
- 2.2.2 Recreational water types

2.3 Factors related to infection and disease
- 2.3.1 Status of host
- 2.3.2 Process of infection

References

3 Credibility of Association and Severity Criteria Index

3.1 Sources of available evidence
- 3.1.1 Limitations of the evidence

3.2 Surveillance

3.3 Credibility of association with recreational water

3.4 Evidence for severity
- 3.4.1 Severity index

3.5 Summary

References

4 Bacteria
- Campylobacter
- E. coli O157
- Helicobacter pylori
- Legionella
- Leptospira
- Mycobacterium avium complex
- Salmonella typhi
- Shigella
- Vibrio vulnificus

References

5 Protozoa and Trematodes
- Cryptosporidium parvum
- Giardia duodenalis
- Microsporidia
- Naegleria fowleri
- Trematode worm

References
<table>
<thead>
<tr>
<th>Contents</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Viruses</td>
<td>191</td>
</tr>
<tr>
<td>Human adenovirus</td>
<td>192</td>
</tr>
<tr>
<td>Coxsackievirus</td>
<td>199</td>
</tr>
<tr>
<td>Echovirus</td>
<td>204</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>208</td>
</tr>
<tr>
<td>Hepatitis E</td>
<td>215</td>
</tr>
<tr>
<td>References</td>
<td>219</td>
</tr>
</tbody>
</table>

| Index | 231 |
Foreword

Worldwide, the popularity of recreational activities which involve contact with water has grown. Moreover, ease of travel has altered the public use of water for recreational purposes.

Recreational exposures to pathogens in the water environment may result in disease. Susceptible populations including people with reduced immune function e.g., resulting from disease (cancer, human immunodeficiency virus (HIV), genetic susceptibility, (age etc.) or lack of acquired immunity to locally endemic diseases (e.g., tourists) may be at higher risk of contracting severe illnesses. Due to the development of protective clothing for use in colder climates, prolonged periods of contact and immersion are becoming more frequent and water-based activities occur throughout the year, not just during restricted seasons. Many infections occur on a seasonal basis and therefore users will be exposed to different and unfamiliar pathogens in the water in different locations and at different times.

The World Health Organization (WHO) has been actively involved in the protection of human health from the use of recreational waters since the 1970s. In 2003 and 2005, WHO published volumes 1 and 2 respectively of the *Guidelines for Safe Recreational Water Environments*. The Guidelines provide
an assessment of the health risks associated with recreational use of water and outline linkages to monitoring and management practices. In terms of the hazards associated with recreational water activities, the Guidelines review the evidence accrued from epidemiological studies proving a link between gastroenteritis, acute febrile respiratory illness (AFRI), ear infections and other generally minor self-limiting illnesses and faecally-contaminated water.

In most cases the clinical conditions (or primary disease symptoms) associated with waterborne disease, including those associated with the use of water for recreational purposes, are acute, such as diarrhoea, vomiting and acute respiratory infections. Although less frequently reported and authenticated, more serious and potentially fatal disease is a risk to recreational users of water especially in certain susceptible populations. In addition to diseases which have severe primary outcomes (e.g., primary amoebic meningoencephalitis, typhoid, leptospirosis), a number of infections may lead to sequelae which are more severe than diseases commonly caused by the pathogen including renal disease (from E. coli O157:H7 for example), cardiac and nutritional disorders.

This publication sets out to describe the more severe waterborne diseases (and their sequelae) which may be acquired while undertaking water-based recreation in marine, freshwater, hot tubs, spas and swimming pools. The document provides the following information:

- An in-depth review of factors that lead to disease severity;
- Evidence for the frequency and severity of different types of sequelae potentially associated with diseases that can be transmitted through recreational water use;
- An extensive review of information concerning susceptible subpopulations that are particularly prone to severe diseases outcomes for specific pathogens;
- A modified classification system for establishing the credibility of disease transmission through recreational water exposures;
- An objective disease severity rating system that will facilitate the prioritization of health protection measures by public health professionals; and
- A pathogen by pathogen review that summarizes the available information on infectivity; susceptible population subgroups; environmental occurrence; evidence for disease transmission through recreational exposures; and rates the plausibility of recreational water disease transmission routes for each pathogen.

Chapters 1–3 provide the evidence for the diseases of interest, and discuss the special factors that lead to more severe disease and/or sequelae as an evaluation of disease severity. Chapters 4-6 review the evidence for severe outcomes from bacteria, protozoa/trematodes and viruses that may be encountered in recreational waters.
For the purposes of this review, the illnesses that have been considered are those where there may be a significant risk of mortality if untreated, those for which the severity of the symptoms usually requires medical intervention, and those where not all patients may recover fully but may suffer from residual symptoms which may last the rest of the patient’s life. This review does not cover illnesses caused by oil, chemicals, biological toxins such as toxic cyanobacteria, or heavy metals.

This review will be useful to those concerned with recreational water quality, including environmental and public health officers, special interest groups, regulators, researchers and professionals in the fields of water supply and management of recreational water.
The World Health Organization wishes to express its appreciation to all those whose efforts made possible the production of this document, in particular to Dr. Kathy Pond (Robens Centre for Public and Environmental Health, University of Surrey, Guildford, United Kingdom) who prepared the document. Special thanks are also due to the United States Environmental Protection Agency, Office of Research and Development who provided financial support for this project.

The important contributions to this document from the following are also gratefully acknowledged:

Nicholas Ashbolt, University of New South Wales, Sydney, Australia
Jamie Bartram, WHO, Geneva, Switzerland
Edith Campbell, formerly Robens Centre for Public and Environmental Health, University of Surrey, Guildford, United Kingdom
Richard Carr, WHO, Geneva, Switzerland
Aidan Cronin, Robens Centre for Public and Environmental Health, University of Surrey, Guildford, United Kingdom
Maddalena Castellani, Istituto Superiore di Sanità, Rome, Italy
Acknowledgements

Alfred P Dufour, United States Environmental Protection Agency, Cincinnati, United States of America
Vicky Garner, formerly Surfers Against Sewage, Newquay, United Kingdom
Ann Grimm, United States Environmental Protection Agency, Cincinnati, USA
Magnea Hjálmarsdóttir, Robens Centre for Public and Environmental Health, University of Surrey, Guildford, United Kingdom
Paul Hunter, University of East Anglia, Norwich, United Kingdom
Kali Johal, Robens Centre for Public and Environmental Health, University of Surrey, Guildford, United Kingdom
David Kay, Centre for Research into Health and the Environment, University of Wales, Lampeter, United Kingdom
Gunhild Hoy Kock-Hansen, The Statens Serum Institut, Department of Epidemiology, Copenhagen, Denmark
Patricia McCusker formerly, Robens Centre for Public and Environmental Health, University of Surrey, Guildford, United Kingdom
E. Pagano, Office Fédéral de la Santé Publique, Epidémiologie et Maladies Infectieuses, Switzerland
Steve Pedley, Robens Centre for Public and Environmental Health, University of Surrey, Guildford, United Kingdom
Rosa Cano Portero, Sección de Información Microbiológica, Centro Nacional de Epidemiología, Madrid, Spain
Gareth Rees, Askham Bryan College, York, United Kingdom
Joerg Rueedi, Robens Centre for Public and Environmental Health, University of Surrey, Guildford, United Kingdom
M. Spalekova, Centre for Communicable Diseases, Institute of Public Health of the Republic of Slovenia, Trubarjeva 2, 1000 Ljubljana, Slovakia.
List of Acronyms and Abbreviations

AFRI Acute febrile respiratory illness
AIDS Acquired immunodeficiency syndrome
CDC Centers for Disease Control and Prevention, USA
CDR Communicable Disease Report
CDSC Communicable Disease Surveillance Centre, United Kingdom
DALY Disability-adjusted life year
DNA Deoxyribonucleic acid
E. coli Escherichia coli
EHEC Enterohaemorrhagic E. coli
EU European Union
HAV Hepatitis A virus
HEV Hepatitis E virus
HIV Human immunodeficiency virus
HUS Haemolytic uraemic syndrome
IDDM Insulin dependent diabetes mellitus
IgG Immunoglobulin G
MAC Mycobacterium avium complex
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRA</td>
<td>Microbial risk assessment</td>
</tr>
<tr>
<td>PAM</td>
<td>Primary amoebic meningoencephalitis</td>
</tr>
<tr>
<td>PHLS</td>
<td>Public Health Laboratory Service, United Kingdom</td>
</tr>
<tr>
<td>QMRA</td>
<td>Quantitative Microbial Risk Assessment</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>SMI</td>
<td>Swedish Institute for Infectious Disease Control</td>
</tr>
<tr>
<td>TTP</td>
<td>Thrombotic thrombocytopenic purpura</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>WBDO</td>
<td>Waterborne Disease Outbreak</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
The use of water for recreational purposes poses a number of health risks which depend on factors such as the nature of the hazard, the characteristic of the water body and the immune status of the user. Although evidence from outbreak reports and other epidemiological evidence have proven a link between adverse health effects and immersion in poor quality recreational water, the difficulties associated with attributing an infection to recreational water use are numerous and the majority of research in this field has focussed on infections associated with the use of recreational waters resulting in minor, self-limiting symptoms.

There are many unanswered questions regarding the severity and frequency of illness associated with recreational water use. It is plausible that more serious illnesses could result from the recreational use of water and this association has not yet been investigated to any great extent. It is also increasingly apparent that a number of micro-organisms or their products are directly or indirectly associated with secondary health outcomes or sequelae and a number of these sequelae may result from waterborne infections. The acute diseases attributable to waterborne pathogens and their epidemiology have been well described, but the sequelae that can result from these diseases have not. Assessing potential
sequelae of waterborne infections is a critical part of microbial risk assessment and the formulation of public policy.

Even where illness is severe, it may still be difficult to attribute it to recreational water exposure due to the large number of other transmission routes of the pathogens in question. Nevertheless, evidence does exist to show that although much less frequent, more serious and potentially fatal disease is a risk to recreational users of water. This book describes the more severe waterborne diseases (and their sequelae) which may be acquired while undertaking water-based recreation in marine, freshwater, hot tubs, spas and swimming pools. A 'weight of evidence' approach has been developed to establish the credibility of association of an illness with recreational water exposure. The approach takes into account epidemiology, microbiology and water quality information. Outbreaks are therefore categorised as being 'strongly', 'probably' or 'possibly' associated with water.

Consideration of whether an illness is severe or not is based on three factors:

- acute symptoms of the disease which are debilitating;
- the ability and probability that the illness will lead to sequelae; and
- the effect of the disease on certain susceptible subpopulations.

Each factor can be considered in its own right or in combination with one or both of the other factors. A simplified index of severity has been created and applied wherever possible to the illnesses considered, taking into account possible sequelae. The outcome measures used to ascertain the relative severity are case-fatality rate, average duration of illness, median percentage of cases requiring hospitalisation, the frequency of development of sequelae and the severity of sequelae. The index is limited by the availability of data and does not take into account the probability of infection following exposure. The index is designed to help public health professionals prioritize recreational water management decisions to reduce the potential for severe disease outcomes.

The following pathogens have been considered:

- **Campylobacter jejuni** — one of the most common causes of bacterial gastroenteritis and chronic sequelae. The pathogen has been isolated from recreational waters on many occasions. However, few cases of illness have been reported through this route. *Campylobacter jejuni* is more likely to be found in recreational waters contaminated by animal and human waste.

- **E. coli O157** — although most outbreaks of *E. coli* O157 have been associated with food, a number of outbreaks have been reported from recreational use of waters, particularly in pools that were not adequately chlorinated. Haemolytic uraemic syndrome with possible long-term sequelae is evident although no follow-up studies appear to have been conducted in people who contracted the infection from recreational water use. The acute disease tends to be moderately severe and of moderate duration.
Helicobacter pylori — water has been implicated as one mode of transmission of *H. pylori* although the detection of the pathogen has proved difficult. Therefore, it is possible that *H. pylori* infection is waterborne, but these assumptions need to be substantiated. Current evidence for its association with recreational waters is slight.

Legionella spp. — there are a number of reports of Legioniainaire’s disease associated with the use of, and proximity to, hot tubs in particular. The illness is considered to be severe with a high risk of death and severe acute symptoms. There are a number of documented cases of persons suffering sequelae as a consequence of infection with *Legionella* spp.

Mycobacterium avium complex — there is clear evidence for the association of *Mycobacterium avium* complex with recreational waters. The species of Mycobacterium that are associated with water are associated with a variety of diseases. Some, such as *M. ulverans* are pathogenic in previously healthy individuals, others, such as *M. avium*, usually cause disease in compromised individuals. The majority of cases associated with recreational waters appear to be attributed to swimming pools and hot tubs resulting in skin and soft tissue infections in immunocompetent patients. However, hypersensitivity pneumonitis is also seen in immunocompetent persons with aerosol exposure to mycobacteria.

Shigella spp. — epidemiological evidence exists for the association of recreational use of water and self-limiting infection with shigella bacteria. The species responsible for the more severe illness, *S. dysenteriae*, is more common in tropical regions but no cases associated with recreational waters were found in the literature. However, it is biologically plausible that *S. dysenteriae* could be encountered in freshwaters used for recreation.

Vibrio vulnificus — this bacteria commonly occurs in marine and estuarine environments. Evidence exists for the association of recreational use of water and infection with *V. vulnificus* where the user has a pre-existing open wound. Surveillance of *V. vulnificus* infections is poor and the number of cases reported is likely to be underestimated.

Cryptosporidium — faecal accidents are implicated in most of the cases as the cause of the outbreaks of cryptosporidiosis, which have primarily occurred in swimming pools, although some cases have been documented from water slides, fountains and water parks. *Cryptosporidium* oocysts show resistance to chlorination. The risk of death and probability of developing long-term sequelae from this infection is low, however the acute illness can be prolonged and moderately severe especially in immunocompromised persons.

Giardia — recreational use of water is a proven risk factor for giardiasis. The majority of symptomatic patients of *Giardia* will clear their infection after one to several weeks although immunocompromised patients may not recover from giardiasis. The risk of death and the probability of developing sequelae from this infection is low, however the acute illness can be prolonged and moderately severe.
Microsporidia — although microsporidia are currently not common causes of recreational waterborne disease, their role as emerging pathogens is being increasingly recognised. Their small size makes them difficult to remove by conventional water filtration techniques and it is thought that, like Cryptosporidium they may show increased resistance to chlorine disinfection. Illness is generally reported in immunocompromised individuals although some infections in immunocompetent individuals have been reported.

Naegleria fowleri has been shown to colonise warm freshwater habitats, such as swimming pools and natural hot springs and there is a high risk of death in infected persons. The acute illness is severe with symptoms lasting more than seven days and death always occurs. Although the infection is rare, new cases are reported every year.

Schistosoma spp. — in some cases serious pathology associated with infection by Schistosoma spp. occurs and can lead to long-term health issues. Schistosoma is only a potential hazard in certain geographic areas (e.g., sub-Saharan Africa). Surveillance for schistosomiasis is currently poor, inferring that many more cases associated with recreational waters occur but are not published. Evidence shows that exposure to schistosomes is difficult to avoid but it has been shown that towel-drying after exposure to infested water can markedly reduce the risk of infection.

Adenovirus — the diseases resulting from infection with adenovirus include conjunctivitis, pharyngitis, pneumonia, acute and chronic appendicitis, bronchiolitis, acute respiratory disease, and gastroenteritis. Adenovirus infections are generally mild; however, there are a number of fatal cases of infection reported in the literature. Transmission of adenovirus in recreational waters, primarily inadequately chlorinated swimming pools, has been documented via faecally-contaminated water and through droplets, although no fatal cases attributable to recreational waters have been documented in the literature.

Coxsackievirus — although there have been very few outbreaks of coxsackievirus linked to recreational water recorded, and epidemiological evidence remains scarce the virus has been frequently isolated from marine and freshwaters. As with other viruses (hepatitis A virus (HAV), adenovirus and echovirus) transmission of the virus is possible and biologically plausible in susceptible persons. Coxsackievirus is responsible for a broad range of illness from mild febrile illness to myocarditis and other more serious diseases.

Echovirus — as with the other enteroviruses discussed in this review, there are few published cases of infection by echovirus in recreational water, those that are recorded are primarily from swimming pool water. The most likely source of the virus is through faecal contamination, although secretions from the eyes or throat are possible. There are likely to be many unreported cases of infection with echovirus.

Hepatitis A virus — has been isolated from surface waters which may be used for recreational purposes and a number of cases of HAV have been
documented associated with recreational water users. Fulminant hepatitis is rare
and has not been reported in any cases linked with the use of recreational
waters. No cases of sequelae of HAV contracted through the use of recreational
waters were found in the literature and the probability of developing long-term
sequelae is low. The acute disease is usually moderately severe and of moderate
duration but risk of death is low.

Hepatitis E virus (HEV) — has been isolated from surface waters which
may be used for recreational purposes. Fulminant hepatitis is rare. No cases of
sequelae of HEV contracted through the use of recreational waters were found
in the literature and the probability of developing long-term sequelae is low. The
acute disease is usually moderately severe and of moderate duration but risk of
death is low except where cases occur during pregnancy.