Heterotrophic Plate Count Measurement in Drinking Water Safety Management

Geneva 24-25 April 2002

Protection of the Human Environment
Water, Sanitation and Health

Geneva, 2002
HETEROTROPHIC PLATE COUNT MEASUREMENT
IN DRINKING WATER SAFETY MANAGEMENT

Report of an Expert Meeting
Geneva, 24-25 April 2002

Water, Sanitation and Health
Department of Protection of the Human Environment
World Health Organization
Geneva
Heterotrophic Plate Count Measurement in Drinking Water Safety Management

© World Health Organization 2002

The illustration of the cover page is extracted from Rescue Mission: Planet Earth, © Peace Child International 1994; used by permission

All rights reserved.
This information material is intended for a restricted audience only. It may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means.
The Role of HPC Measurement in Drinking Water Quality Management

Background
A group of microbiology and public health experts including regulatory and medical expertise was convened in Geneva, Switzerland, 25-26 April 2002 to consider the utility of Heterotrophic Plate Count (HPC) measurements in addressing drinking water quality and safety. The group was convened following the NSF International/World Health Organization Symposium on HPC Bacteria in Drinking Water Public Health Implications.

The meeting was attended by 31 participants from Australia, Canada, France, Germany, Italy, Japan, the Netherlands, South Africa, Switzerland, UK and USA (see Annex 1).

Introduction
Dr Jamie Bartram opened the meeting and thanked Health Canada, Centers for Disease Control and Prevention, US Environmental Protection Agency and American Water Works Association Research Foundation for providing financial support. Dr Martin Exner was elected Chairman and Drs Joseph Cotruvo and Axel Glasnacher as joint Rapporteurs.

This report provides an assessment of the public health significance of "heterotrophic plate count" (HPC) measurements in drinking-water quality management, based on a review of presently available information and experience by an international group of experts. It deals with evidence concerning:

- The relationship of HPC to health risk for the general public.
- The role of HPC as an indirect indicator or index for pathogens of concern in drinking-water.
- The role of HPC in assessing the efficacy and proper functioning of water treatment and supply processes.
- The relationship of HPC to aesthetic acceptability of drinking water.

The scope of the report deals with safe water supply, extending from source to consumer, including plumbed-in devices, domestic and building environments, and water supplied in bottles or packages. The different uses for which drinking water may be used in the home are considered and specific concerns in higher risk settings and populations at increased risk are addressed.

Agenda to the meeting
The agenda of the meeting is included in Annex 2.

Conclusion of Meeting

1. Definitions and Scope

1.1 Drinking water

WHO considers that ‘drinking water’ should be ‘suitable for human consumption and for all usual domestic purposes including personal hygiene’. Diverse regulatory agencies adopt similar definitions. Drinking water should therefore be suitable for consumption, washing/showering and domestic food preparation. In human health terms, exposure to water and its constituents can occur through ingestion, contact and aerosol inhalation.

Drinking waters should be safe for lifetime use, taking account of differing sensitivities that occur across life stages, but all are not necessarily suitable for individuals suffering from certain specific immune compromising disorders.

Piped drinking water supplies typically involve source abstraction, treatment and distribution. The latter may include ancillary devices at domestic or institutional levels such as softeners, activated
carbon treatment, vending machines, dispensers etc. Drinking waters also include those obtained from non-piped sources such as springs and community wells, in bottles and as ice.

The control of faecal contamination in drinking water systems and sources where it occurs, is of primary importance. Faecal-specific indicator bacteria such as *E. coli* are the parameters of first importance in monitoring faecal pollution.

1.2 Heterotrophic plate count

Heterotrophs are broadly defined as microorganisms that require organic carbon for growth. They include bacteria, yeasts and moulds. A variety of simple culture-based tests which are intended to recover a wide range of microorganisms from water are collectively referred to as "heterotrophic plate count" or "HPC test" procedures. Accordingly, the terms "heterotroph" and "HPC" are not synonymous.

There is no universal 'HPC measurement'. Although standardized methods have been formalised, HPC test methods involve a wide variety of test conditions that lead to a wide range of quantitative and qualitative results. Temperatures employed range from around 20°C to 40°C, incubation times from a few hours to 7 days or a few weeks, and nutrient conditions from low to high. The test itself does not specify the organisms that are detected.

Only a small proportion of the metabolically active microorganisms present in a water sample may grow and be detected under any given set of HPC test conditions, and the population recovered will differ significantly according to the method used. The actual organisms recovered in HPC testing can also vary widely between locations, seasons and between consecutive samples at a single location.

Microorganisms recovered through HPC tests generally include those that are part of the natural (typically non-hazardous) microbiota of water; in some instances they may also include organisms derived from diverse pollutant sources.

1.3 Microbial growth in water

Microorganisms will normally grow in water, and on surfaces in contact with water as biofilms. Growth following drinking water treatment is normally referred to as 'regrowth'. Growth is typically reflected in higher HPC values measured in water samples. Elevated HPC levels occur especially in stagnant parts of piped distribution systems, in domestic plumbing, in bottled water and in plumbed-in devices such as softeners, carbon filters, and vending machines. The principal determinants of regrowth are temperature, availability of nutrients, and lack of residual disinfectant. Nutrients may derive from the water body and/or materials in contact with water.

1.4 Use of HPC in water management

HPC testing has a long history of use in water microbiology. At the end of the 19th century HPC tests were employed as indicators of the proper functioning of processes (and of sand filtration in particular) and thereby as indirect indicators of water safety. Use as a safety indicator declined with the adoption of specific faecal indicator bacteria during the 20th century.

HPC measurements nevertheless continue to figure in water regulations or guidelines in many countries. HPC measurements are used:

- to indicate the effectiveness of water treatment processes, thus as an indirect indication of pathogen removal;
- as a measure of numbers of regrowth organisms that may or may not have sanitary significance; and
- as a measure of possible interference with coliform measurements in lactose-based culture methods. This application is of declining value as lactose-based culture media are being replaced by alternative methods that are lactose-free.
2. Applications in piped water supplies

2.1 Water Safety Plans
There is an increasing trend toward application of a comprehensive 'Water Safety Plan' (WSP) approach to drinking water supply safety management. This approach is applicable throughout the water supply from catchment to consumer.

It has been proposed that WSP approach be included in the next edition of the WHO Guidelines for Drinking-water Quality and that this would entail five components:

1. Water quality targets based upon public health protection and disease prevention.
2. System assessment to determine whether the water supply chain (up to the point of consumption) as a whole can deliver water of a quality that meets the defined targets.
3. Monitoring of the steps in the supply chain which are of particular importance in securing safe drinking water.
4. Management plans documenting the system assessment and monitoring; and describing action to be undertaken from normal conditions to extreme events, including documentation and communication.
5. Systematic independent surveillance that verifies that the above are operating properly.

Piped water systems of large buildings may incur greater growth than encountered elsewhere (because of storage tanks and extensive internal distribution networks, and temperature-related growth). The principal health concerns in these networks are cross connections, and growth of Legionella bacteria, that are not detected by the HPC test procedures. General water safety is assured by maintenance protocols, regular cleaning, temperature management and maintenance of a disinfectant residual. For these reasons authorities responsible for building safety should provide advice and require specific water management safety plans.

2.2 Water quality targets
There is no evidence that HPC values alone directly relate to health risk either from epidemiological studies or from correlation with occurrence of waterborne pathogens. They are therefore unsuitable for public health target setting, or as sole justification for issuing "boil water" advisories. Abrupt increases in HPC levels might sometimes concurrently be associated with faecal contamination; tests for E.coli or other faecal-specific indicators and other information are essential for determining whether a health risk exists.

2.3 Validation and verification
Experience suggests that HPC monitoring can be used in drinking water supplies along with other information for validation and verification of treatment process performance and other applications. These may include:

- Monitoring of performance of filtration or disinfection processes.

- In piped distribution systems HPC measurements are assumed to respond primarily to (and therefore provide a general indication of) distribution system conditions. These arise from stagnation, loss of residual disinfectant, high levels of Assimilable Organic Carbon (AOC) in the water, higher water temperature, and availability of particular nutrients. In systems treated by chloramination or that contain ammonia in source waters, measurement of a variety of parameters including HPC, but especially nitrate and nitrite (which are regulated for health protection), can sometimes indicate the possible onset of nitrification.

- HPC values are also used in verification (and by some authorities also for validation) of efficacy of cleaning in diverse applications including drink vending machines, food processing and
preparation facilities and medical devices. These applications of HPC have not been considered in this review.

2.4 Aesthetic quality
Drinking water must be aesthetically acceptable as well as safe. Aesthetic acceptability is directly relevant to health since rejection of safe, but unacceptable (undesirable) water, may lead users to consume acceptable but potentially unsafe alternative waters. HPC testing may be used in investigating aesthetic quality and it is used by some authorities as a marker for some of the underlying causes of some aesthetic problems.

3. Applications/ uses in non-piped and other water supplies

3.1 Bottled water
Bottled ("packaged") water is considered drinking water under some regulatory schemes and as a food in others. Some authorities distinguish natural mineral water from other bottled waters. WHO Guidelines for Drinking-water Quality are referred to directly in international norms (Codex Alimentarius Commission) and are considered applicable to bottled waters.

Bottled waters represent a specific growth situation for microbial flora. Bottled waters may derive from 'pristine' sources ('natural mineral water') or from processed waters. They may contain or have added carbon dioxide that will restrict regrowth potential, but typically no long-lasting disinfectant residual is present. The finished product will often be exposed to elevated (room) temperatures over a period of days to weeks before consumption.

Microorganisms naturally occurring in water are a normal part of the microbiota of bottled waters that meet appropriate safety norms. Levels of HPC recovered from bottled water post-distribution may therefore sometimes be significantly higher than those found in municipal water supplies in distribution.

Microbial safety for bottled waters is best pursued by a Water Safety Plan approach (as summarized in Section 2.1). Pseudomonas aeruginosa and HPC counts are used by some as process management indicators in bottled water production and not as health risk indicators.

3.2 Plumbed-in Devices
Bacterial growth occurs in plumbed-in domestic water devices (including water softeners, carbon filters etc.) and plumbed-in commercial devices such as beverage vending machines. HPC values in water samples typically increase in such devices. Increases of HPC (due to growth) in these devices therefore do not indicate the existence of a health risk, so long as the entry water meets acceptable water microbial quality norms (e.g. WHO Guidelines for Drinking-water Quality). Appropriate maintenance of these devices is required for aesthetic reasons (see section 2.4) e.g. per manufacturers' recommendations. Plumbed-in devices in health care facilities are considered in section 4.

3.3 Conveyances
Water systems on conveyances such as ships and aircraft present specific challenges to water safety management. These include both physical characteristics (extensive complex piping in confined space, physical movement) as well as organisational issues, such as multiple responsible parties in different locations and at different stages of delivery.

In general, the potential roles for HPC in water safety management in conveyances are similar to those elsewhere (see Section 2.1). HPC measurements alone are unsuitable for use in independent surveillance by, for example, Port Health Authorities where series results are unavailable; faecal indicator bacteria measurements are essential in this role. This issue is dealt with in the WHO Guide
to Ship Sanitation and Guide to Hygiene and Sanitation in Aviation, which are presently in revision.

When drinking water is stored in tanks in conveyances microbial growth invariably occurs. If HPC testing is conducted, the counts measured will often exceed those normally found in piped distribution systems. Obtaining a high count by the HPC test may indicate the need to examine procedures for taking on water, maintenance of the system and disinfection.

3.4 Other water exposure media

Swimming pools and spas are outside the topic of this report. They are dealt with in WHO Guidelines for Safe Recreational Water Environments. The role of HPC in humidifiers and air cooling is also outside the scope of this report.

4. Health Aspects

4.1 Exposure

Exposure to general HPC microbiota is far greater through foodstuffs than through drinking water. Levels of exposure regarded as acceptable from foods are much greater than those regarded as acceptable from drinking water. Limited data are available with which to characterise exposure to specific microorganisms through these two routes. Exposure to HPC microbiota also occurs through air and other environmental sources.

4.2 Epidemiology

Some epidemiological studies have been conducted into the relationship between HPC exposures from drinking water and human health effects. Other studies relevant to this issue include case studies, especially in clinical situations and compromised animal challenge studies using heterotrophic bacteria obtained from drinking water distribution systems. The available body of evidence supports the conclusion that, in the absence of faecal contamination, there is no direct relationship between HPC values in ingested water and human health effects in the population at large. This conclusion is also supported indirectly by evidence from exposures to HPC in foodstuffs where there is no evidence for a health effects link in the absence of pathogen contamination.

There is a small number of studies that have examined possible links between HPC and non-intestinal outcomes in general populations. The conclusions of these studies do not support a relationship.

4.3 Health Effects - Specific organisms

Information on the association of specific HPC microbiota with health effects may be derived from epidemiological studies, including outbreak investigations, or from risk assessments.

Bacteria typically described as “opportunistic pathogens” that may be recovered amongst HPC microbiota include strains of *Pseudomonas aeruginosa*, *Acinetobacter* spp., *Aeromonas* spp., *Klebsiella pneumoniae* etc. There is no evidence of association of any of these with gastro-intestinal infection through the water-borne route among the general population.

There are opportunistic pathogens which may regrow in water but which are not detected in HPC measurements including strains of *Legionella* and non-tuberculous Mycobacteria. The public health significance of inhalation exposure to some legionellae has been demonstrated.

There is no evidence that HPC levels *per se*, as measured by established procedures, have a direct relationship to the likely presence of, or act as indices for the numbers or presence of regrowth organisms such as legionellae, *P. aeruginosa* and non-tuberculous mycobacteria.

4.4 Populations at increased risk (including sensitivity through life stages)
Specific strains of microbial species that may be a part of HPC microbiota can cause infection in certain vulnerable people (e.g. the immunocompromised and those with in-dwelling urinary catheters, intravenous catheters, continuous ambulatory peritoneal dialysis, etc.). Most infections due to these organisms are from non-water sources (endogenous microbiota, cross-infection from other persons in health care wards or the general environment). However, there have been a number of outbreaks reported where the investigations may implicate the water supply. The implication for infections of immunocompromised patients in the general community is unclear.

There are increasing numbers of persons who are immunocompromised to various degrees and types living in communities, including some patients discharged to 'home care'. Normal "drinking water" is not always suitable for all such individuals for all uses (e.g. wound irrigation). This relates to water safety in general and not to growth or HPC organisms in particular. Advice should be provided by public health authorities to at-risk groups in general and by practitioners responsible for individuals discharged to home care.

Where the drinking water supply meets international norms such as WHO Guidelines for Drinking-water Quality, only those people with severe changes from normal as determined by their physicians or medical agencies (e.g. an absolute neutrophil count < 500/µl) are considered immunosuppressed to the extent that they may require specially processed drinking water.

4.5 Health Care Facilities

Health care facilities include hospitals, health centres, dialysis facilities and dental facilities. These facilities represent a general area of concern for infection control because of the potentially increased susceptibility of the associated population, and their risk of infection from organisms growing in their environment.

Health care facilities should have general water safety plans as part of their infection control strategy. Such plans may be generic (e.g. applicable to health centres in general) or specific when applied to a larger built environment (e.g. many hospitals and nursing homes). Such plans should address microbial growth in addition to control of external contamination by Pseudomonas aeruginosa, and Legionella, and should include ancillary equipment such as shower heads, and medical devices such as dialysis units and dental water dispensing equipment that involve patient contact.

5. Outstanding Questions and Research

The state of the evidence indicates that any further research on HPC in general should focus on its use for process management and control applications as described in section 2, and is not a high priority for public health protection.

Because of ongoing interest, further research in this area is likely to occur. It may usefully focus on:

- specific heterotrophic organisms of potential concern for human health, along with developments of future molecular techniques that may provide additional public health information;
- the immunocompromised (especially infection control in healthcare facilities and susceptible persons in the public at large);
- non ingestion exposures (including aerosol exposure and hypersensitivity reactions), and roles of amoebae in biofilms;
- Pseudomonas aeruginosa bacteria which are common in the environment and occasionally are found in drinking water - they are sometimes associated with wound and other infections in high-risk populations;
- additional research on conditions and routes of exposure, control methods (when appropriate);
- susceptible populations of relevance to exposure from drinking water would be appropriate.
The potential role of heterotrophic bacteria in preventing or reducing colonisation of water system components by organisms of human health concern also merits further research.

6. Bibliography

WHO Guidelines for Safe Recreational Waters
Volume 1 – Coastal and Fresh Waters
Volume 2 – Swimming Pools, Spas and Similar Recreational Water Environments

WHO Guide to Hygiene and Sanitation on Aircraft.

General Standard for Bottled/Packaged Drinking Water (other than Natural Mineral Water).

Standard Methods for the Analysis of Drinking Water and Wastewater- APHA, AWWA, WEF.

EU 98-83-EG Quality of Water for Human Consumption (3 November 1998 (ABLEG no. 330).

ANNEX 1

Participants

Nicholas Ashbolt
University of New South Wales - Sydney
Randwick NSW 2052 Australia
T - 61 2 9385 5946
F - 61 2 9385 6139
n.ashbolt@unsw.edu.au

Lucia Bonadonna
Istituto Superiore Di Sanita
Viale Regina Elena 299
Roma 00161 Italy
T - 39 066 990 2317
F - 39 064 938 7083
Lucybond@iss.it

David Cunliffe
Environmental Health Branch
Department of Human Services
PO Box 6, Rundle
Adelaide SA Australia
T - 61 8 8226 7153
F - 61 8 8226 7102
daavid.cunliffe@dhs.sa.gov.au

Al Dufour
US EPA
26 W Martin Luther King Drive
Cincinnati OH 45268 USA
T - 1 513 569 7330
F - 1 513 569 7464
Dufour.alfred@epa.gov

Steven Edberg
Yale University School of Medicine
Department of Laboratory Medicine
Box 20835, 333 Cedar Street
New Haven CT 06510 USA
T - 1 203 688 2457
stephen.edberg@yale.edu

Takuro Endo
National Institute of Infectious Diseases
Toyama 1-23-1
Shinjuku Tokyo Japan
T - 81 3 5285 1173
F - 81 3 5285 1173
tendo@nih.go.jp

Martin Exner (Chairman)
Institute of Hygiene and Public Health
Sigmund Freud 25
Bonn 53105 Germany
T - 49 228 287 5520
martin.exner@ukb.uni.de

Colin Fricker
CRF Consulting
Childs Acre - Church Lane
Three Mile Cross
Reading RG7 1HD UK
T - 44 118 988 3693
Cfricker@compuserve.com

Charles Gerba
University of Arizona
Dept of Water, Soil and Environmental Science
Tucson AZ 85721 USA
T - 1 520 621 6906
F - 1 520 621 6366
gerba@ag.arizona.edu

Axel Glasmacher (Rapporteur)
University of Bonn
Department of Internal Medicine
Bonn 53105 Germany
T - 49 228 287 5507
F - 49 228 287 5849
Glasmacher@uni-bonn.de
Paul Hunter
University of East Anglia
School of Medicine, Health Policy & Practice
Norwich NR4 7TJ UK
T - 44 1603 591004
paul.hunter@uea.ac.uk

Mark LeChevallier
American Water Works Service Company
1025 Laurel Oak Road
PO Box 1770
Voorhees NJ 08043 USA
T - 1 856 346 8261
F - 1 856 782 3603
Mlecheva@amwater.com

Henri Leclerc
Faculte de Medicine
1 place de Verdun
Lille Cedex 59045 France
T - 33 0320 62 68 36
hleclerc@univ-lille2.fr

Nigel Lightfoot
PHLS North
Milburn House
Dean Street
New Castle Upon Tyne NE1 1LF UK
T - 44 1912612577
F - 44 1912612578
Grnpnligh@north.phls.nhs.uk

Yasumoto Magara
Hokkaido University
Kita-ku
Sapporo N13 W8 Japan
T - 81 11 706 7278
F - 81 11 706 7280
magara@eng.hokudai.ac.jp

David A. A. Mossel
Eijkman Foundation for Public Health
Microbiology of Foods and Drinking Water
Utrecht University
PO Box 6024
Utrecht 3503 PA The Netherlands
T - 31 3029 33019
F - 31 3029 48687

Pierre Payment
INRS-Institut Armand-Frappier
531 Boul des Prairies
Laval Quebec H7V 1B7 Canada
T - 1 450 687 5010
F - 1 450 686 5626
pierre.payment@inrs-iaf.uquebec.ca

Donald Reasoner
US EPA
26 W Martin Luther King Drive
MS-387
Cincinnati OH 45268 USA
T - 1 513 569 7234
Reasoner.donald@epa.gov
Will Robertson
Health Canada
123 Slater Street
PL 3505A
Ottawa ON K1A OK9 Canada
T - 1 613 957 1505
F - 1 613 952 2574
will_robertson@hc-sc.gc.ca

David Sartory
Severn Trent Water
Welshpool Road
Shelton
Shrewsbury SY3 8BJ UK
T - 44 1743 265765
F - 44 1743 265043
david.sartory@serverntrent.co.uk

Dick van der Kooij
KIWA NV Water Research
Groningenhaven 7
PO Box 1072
Nieuwegein 3430 BB The Netherlands
T - 31 30 6069 634
F - 31 30 6061 165
dick.van.der.kooij@kiwa.nl
Observers

Martin Allen
AWWA Research Foundation
6666 W Quincy Avenue
Denver CO 80235 USA
T - 303 347 6107
F - 303 347 6107
mallen@awwarf.com

Chrissie De Wet
Rand Water
Microbiology Section
PO Box 3526
Vereenigine 1939 South Africa
T – 2716 4215 150
F – 2716 455 2055
Cdewet@randwater.co.za

Annick Moreau
Danone Water Technology Centre
Place de la Gare
Evian 74500 France
T - 33 45026 8256
F - 33 450756744
amoreau@evian.danone.com

Dominique Olivier
Vivendi Water
CENTC 164
1 Place Turenne
Saint Maurice 94417 France
T - 33 149 765825
F - 33 149 765875
Dominique.olivier@generale_des_eaux.net

Ralph Schubert
Institute of Hygiene and Environmental Health
Paul Ehrlich Str 40
Frankfurt am60896 Germany
T - 49 69 6301 5432
F - 49 69 5691 92
auxiliarius@t-online.de

Melita Stevens
Melbourne Water
PO Box 4342
Melbourne Victoria 3001 Australia
T - 61 3 9235 7220
F - 61 3 9235 7226
melita.stevens@melbournewater.com.au

Corry B. Struyk
Eijkman Foundation for Public Health
Microbiology of Foods and Drinking Water
Utrecht University
PO Box 6024
Utrecht 3503 PA The Netherlands
T - 31 3029 33019
F - 31 3029 48687
Secretariat

Jamie Bartram
World Health Organization
20 Avenue Appia
Geneva 1211 Switzerland
T - 41 22 791 1295
F - 41 22 791 4159
bartramj@who.int

Joseph Cotruvo
J. Cotruvo Associates / NSF International
5015 46th Street NW
Washington DC 20016 USA
T - 1 202 362 3076
F - 1 202 362 3076
joseph.cotruvo@verizon.net

Janice Freytag
NSF International
789 North Dixboro Road
Ann Arbor, MI 48105 USA
T- 1 734 827-6818
F – 1 734 827 6840
freytag@nsf.org

Keri Broughton
NSF International
789 North Dixboro Road
Ann Arbor, MI 48105 USA
T - 1 734 827 6818
F - 1 734 827 7795
Broughton@nsf.org

Stan Hazan
NSF International
789 North Dixboro Road
Ann Arbor, MI 48105 USA
T- 1 734 769 5105
F – 1 734 827 6840
hazan@nsf.org
1. Definitions and Scope

2. Applications in piped water supplies

3. Applications/uses in non-piped and other water supplies

4. Health aspects

5. Outstanding questions and research

Annex 1 – Participants
Annex 2 – Meeting Agenda