12.4 Aldrin and dieldrin

Aldrin (CAS No. 309-00-2) and dieldrin (CAS No. 60-57-1) are chlorinated pesticides that are used against soil-dwelling pests, for wood protection and, in the case of dieldrin, against insects of public health importance. Since the early 1970s, a number of countries have either severely restricted or banned the use of both compounds, particularly in agriculture. The two compounds are closely related with respect to their toxicology and mode of action. Aldrin is rapidly converted to dieldrin under most environmental conditions and in the body. Dieldrin is a highly persistent organochlorine compound that has low mobility in soil, can be lost to the atmosphere and bioaccumulates. Dietary exposure to aldrin/dieldrin is very low and decreasing.

Guideline value 0.00003 mg/litre (0.03 μg/litre) combined aldrin and dieldrin

Occurrence
Concentrations of aldrin and dieldrin in drinking-water normally less than 0.01 μg/litre; rarely present in groundwater

PTDI 0.1 μg/kg of body weight (combined total for aldrin and dieldrin), based on NOAELs of 1 mg/kg of diet in the dog and 0.5 mg/kg of diet in the rat, which are equivalent to 0.025 mg/kg of body weight per day in both species, and applying an uncertainty factor of 250 based on concern about carcinogenicity observed in mice

Limit of detection 0.003 μg/litre for aldrin and 0.002 μg/litre for dieldrin by GC with ECD

Treatment achievability 0.02 μg/litre should be achievable using coagulation, GAC or ozonation

Guideline derivation
- allocation to water 1% of PTDI
- weight 60-kg adult
- consumption 2 litres/day

Additional comments Aldrin and dieldrin are listed under the Stockholm Convention on Persistent Organic Pollutants. Hence, monitoring may occur in addition to that required by drinking-water guidelines.

Toxicological review

Both compounds are highly toxic in experimental animals, and cases of poisoning in humans have occurred. Aldrin and dieldrin have more than one mechanism of toxicity. The target organs are the central nervous system and the liver. In long-term studies, dieldrin was shown to produce liver tumours in both sexes of two strains of
mice. It did not produce an increase in tumours in rats and does not appear to be genotoxic. IARC has classified aldrin and dieldrin in Group 3. It is considered that all the available information on aldrin and dieldrin taken together, including studies on humans, supports the view that, for practical purposes, these chemicals make very little contribution, if any, to the incidence of cancer in humans.

History of guideline development

The 1958 and 1963 WHO *International Standards for Drinking-water* did not refer to aldrin and dieldrin, but the 1971 International Standards suggested that pesticide residues that may occur in community water supplies make only a minimal contribution to the total daily intake of pesticides for the population served. In the first edition of the *Guidelines for Drinking-water Quality*, published in 1984, a health-based guideline value of 0.03 \(\mu \text{g/litre} \) was recommended for aldrin and dieldrin, based on the ADI recommended by JMPR in 1970 for aldrin and dieldrin residues separately or together and reaffirmed by toxicological data available in 1977. The 1993 Guidelines confirmed the health-based guideline value of 0.03 \(\mu \text{g/litre} \) for aldrin and dieldrin, based on the reaffirmation of the ADI recommended in 1977 by JMPR.

Assessment date

The risk assessment was conducted in 2003.

Principal references

12.5 Aluminium

Aluminium is the most abundant metallic element and constitutes about 8% of the Earth’s crust. Aluminium salts are widely used in water treatment as coagulants to reduce organic matter, colour, turbidity and microorganism levels. Such use may lead to increased concentrations of aluminium in finished water. Where residual concentrations are high, undesirable colour and turbidity may ensue. Concentrations of aluminium at which such problems may occur are highly dependent on a number of water quality parameters and operational factors at the water treatment plant. Aluminium intake from foods, particularly those containing aluminium compounds used as food additives, represents the major route of aluminium exposure for the general