ADI recommended by JMPR in 1977. The 1993 Guidelines established a health-based guideline value of 0.2 μg/litre for chlordane in drinking-water, based on an ADI established by JMPR in 1986.

Assessment date
The risk assessment was conducted in 2003.

Principal references

12.22 Chloride
Chloride in drinking-water originates from natural sources, sewage and industrial effluents, urban runoff containing de-icing salt and saline intrusion.

The main source of human exposure to chloride is the addition of salt to food, and the intake from this source is usually greatly in excess of that from drinking-water. Excessive chloride concentrations increase rates of corrosion of metals in the distribution system, depending on the alkalinity of the water. This can lead to increased concentrations of metals in the supply.

No health-based guideline value is proposed for chloride in drinking-water. However, chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water (see chapter 10).

History of guideline development
The 1958 WHO *International Standards for Drinking-water* suggested that concentrations of chloride greater than 600 mg/litre would markedly impair the potability of the water. The 1963 and 1971 International Standards retained this value as a maximum allowable or permissible concentration. In the first edition of the *Guidelines for Drinking-water Quality*, published in 1984, a guideline value of 250 mg/litre was established for chloride, based on taste considerations. No health-based guideline value for chloride in drinking-water was proposed in the 1993 Guidelines, although it was confirmed that chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water.
Assessment date
The risk assessment was originally conducted in 1993. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the Guidelines for Drinking-water Quality.

Principal reference

12.23 Chlorine
Chlorine is produced in large amounts and widely used both industrially and domestically as an important disinfectant and bleach. In particular, it is widely used in the disinfection of swimming pools and is the most commonly used disinfectant and oxidant in drinking-water treatment. In water, chlorine reacts to form hypochlorous acid and hypochlorites.

Guideline value 5 mg/litre
Occurrence Present in most disinfected drinking-water at concentrations of 0.2–1 mg/litre
TDI 150 μg/kg of body weight, derived from a NOAEL for the absence of toxicity in rodents ingesting chlorine in drinking-water for 2 years
Limit of detection 0.01 μg/litre following pre-column derivatization to 4-bromoacetanilide by HPLC; 10 μg/litre as free chlorine by colorimetry; 0.2 mg/litre by ion chromatography
Treatment achievability It is possible to reduce the concentration of chlorine effectively to zero (< 0.1 mg/litre) by reduction. However, it is normal practice to supply water with a chlorine residual of a few tenths of a milligram per litre to act as a preservative during distribution.

Guideline derivation
- allocation to water 100% of TDI
- weight 60-kg adult
- consumption 2 litres/day

Additional comments
- The guideline value is conservative, as no adverse effect level was identified in the critical study.
- Most individuals are able to taste chlorine at the guideline value.

Toxicological review
In humans and animals exposed to chlorine in drinking-water, no specific adverse treatment-related effects have been observed. IARC has classified hypochlorite in Group 3.