GUIDELINES FOR DRINKING-WATER QUALITY

Assessment date
The risk assessment was conducted in 2003.

Principal references

12.102 Polynuclear aromatic hydrocarbons (PAHs)
PAHs form a class of diverse organic compounds each containing two or more fused aromatic rings of carbon and hydrogen atoms. Most PAHs enter the environment via the atmosphere from a variety of combustion processes and pyrolysis sources. Owing to their low solubility and high affinity for particulate matter, they are not usually found in water in notable concentrations. The main source of PAH contamination in drinking-water is usually the coal-tar coating of drinking-water distribution pipes, used to protect the pipes from corrosion. Fluoranthenes is the most commonly detected PAH in drinking-water and is associated primarily with coal-tar linings of cast iron or ductile iron distribution pipes. PAHs have been detected in a variety of foods as a result of the deposition of airborne PAHs and in fish from contaminated waters. PAHs are also formed during some methods of food preparation, such as charbroiling, grilling, roasting, frying or baking. For the general population, the major routes of exposure to PAHs are from food and ambient and indoor air. The use of open fires for heating and cooking may increase PAH exposure, especially in developing countries. Where there are elevated levels of contamination by coal-tar coatings of water pipes, PAH intake from drinking-water could equal or even exceed that from food.

<table>
<thead>
<tr>
<th>Guideline value for benzo[a]pyrene (BaP)</th>
<th>0.0007 mg/litre (0.7 μg/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
<td>PAH levels in uncontaminated groundwater usually in range 0–5 ng/litre; concentrations in contaminated groundwater may exceed 10 μg/litre; typical concentration range for sum of selected PAHs in drinking-water is from about 1 ng/litre to 11 μg/litre</td>
</tr>
</tbody>
</table>
Basis of guideline derivation

Based on an oral carcinogenicity study in mice and calculated using a two-stage birth–death mutation model, which incorporates variable dosing patterns and time of killing; quantification of dose–response for tumours, on the basis of new studies in which the carcinogenicity of BaP was examined following oral administration in mice, but for which the number of dose groups was smaller, confirms this value.

<table>
<thead>
<tr>
<th>Limit of detection</th>
<th>0.01 μg/litre by GC/MS and reverse-phase HPLC with a fluorescence detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment achievability</td>
<td>0.05 μg/litre should be achievable using coagulation</td>
</tr>
</tbody>
</table>

Additional comments

- The presence of significant concentrations of BaP in drinking-water in the absence of very high concentrations of fluoranthene indicates the presence of coal-tar particles, which may arise from seriously deteriorating coal-tar pipe linings.
- It is recommended that the use of coal-tar-based and similar materials for pipe linings and coatings on storage tanks be discontinued.

Toxicological review

Evidence that mixtures of PAHs are carcinogenic to humans comes primarily from occupational studies of workers following inhalation and dermal exposure. No data are available for humans for the oral route of exposure. There are few data on the oral toxicity of PAHs other than BaP, particularly in drinking-water. Relative potencies of carcinogenic PAHs have been determined by comparison of data from dermal and other studies. The order of potencies is consistent, and this scheme therefore provides a useful indicator of PAH potency relative to BaP.

A health-based value of 4 μg/litre can be calculated for fluoranthene on the basis of a NOAEL of 125 mg/kg of body weight per day for increased serum glutamate–pyruvate transaminase levels, kidney and liver pathology, and clinical and haematological changes in a 13-week oral gavage study in mice, using an uncertainty factor of 10,000 (100 for inter- and intraspecies variation, 10 for the use of a sub-chronic study and inadequate database and 10 because of clear evidence of co-carcinogenicity with BaP in mouse skin painting studies). However, this health-based value is significantly above the concentrations normally found in drinking-water. Under usual conditions, therefore, the presence of fluoranthene in drinking-water does not represent a hazard to human health. For this reason, the establishment of a guideline value for fluoranthene is not deemed necessary.

History of guideline development

The 1958 and 1963 WHO International Standards for Drinking-water did not refer to PAHs. The 1971 International Standards stated that some PAHs are known to be carcinogenic and that the concentrations of six representative PAH compounds (fluoranthene, 3,4-benzfluoranthene, 11,12-benzfluoranthene, 3,4-benzpyrene, 1,12-benzpyrene and indeno [1,2,3-cd] pyrene) should therefore not, in general, exceed 0.0002 mg/litre. In the first edition of the Guidelines for Drinking-water Quality,
published in 1984, the only PAH for which there was sufficient substantiated toxicological evidence to set a guideline value was BaP. A health-based guideline value of 0.00001 mg/litre was recommended for BaP, while noting that the mathematical model appropriate to chemical carcinogens that was used in its derivation involved considerable uncertainty. It was also recommended that the control of PAHs in drinking-water should be based on the concept that the levels found in unpolluted groundwater should not be exceeded. The 1993 Guidelines concluded that there were insufficient data available to derive drinking-water guidelines for PAHs other than BaP. The guideline value for BaP, corresponding to an upper-bound excess lifetime cancer risk of 10^{-5}, was calculated to be 0.0007 mg/litre. This guideline value was retained in the addendum to the second edition of the Guidelines, published in 1998, as it was confirmed by new studies on the carcinogenicity of the compound. It was also recommended that the use of coal-tar-based and similar materials for pipe linings and coatings on storage tanks be discontinued. Although a health-based value for fluoranthene was calculated in the addendum, it was significantly above the concentrations found in drinking-water, and it was concluded that, under usual conditions, the presence of fluoranthene in drinking-water does not represent a hazard to human health; thus, the establishment of a guideline value for fluoranthene was not deemed necessary. As there are few data on the oral toxicity of other PAHs, particularly in drinking-water, relative potencies of carcinogenic PAHs were determined by comparison of data from dermal and other studies, which provides a useful indicator of PAH potency relative to BaP.

Assessment date

The risk assessment was originally conducted in 1998. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the *Guidelines for Drinking-water Quality*.

Principal reference

12.103 Propanil

Propanil (CAS No. 709-98-8) is a contact post-emergence herbicide used to control broad-leaved and grassy weeds, mainly in rice. It is a mobile compound with affinity for the water compartment. Propanil is not, however, persistent, being easily transformed under natural conditions to several metabolites. Two of these metabolites, 3,4-dichloroaniline and 3,3',4,4'-tetrachloroazobenzene, are more toxic and more persistent than the parent compound. Although used in a number of countries, propanil has only occasionally been detected in groundwater.