Index

(Note that tables are indicated by **bold** page numbers and illustrations by *italics*).

absolute risk 238
acceptable risk see risk, acceptable
acquired immunity, determinant of disease 236–7
Africa, sanitation (in 1990 and 2000) 99
animal faeces (warm-blooded), microbiological water quality indicators 294, 295
ascariasis
   Israel 141–2
   Mexico 150–5, 201
   quality audit (QA) 203
   wastewater reuse, quality audit (QA) 203
attributable risk 238
Australia
   Melbourne case studies 274–6
   drinking water quality 156
   Sydney Water case studies 267–8, 272–4
   hazards and ranking scheme 273

*Bacillus* spores 298
bacterial probability density function, recreational water quality 35–6
bacterial regrowth, endemic waterborne disease 72

bacteriophages 295–7
   defined 291
   limitations as indicators 298–9
   major groups of indicator coliphages 296
   phages in water environments 296
*Bacteroides fragilis*
   bacteriophages 291
detection 302
bargaining
   bureaucratic model 219
   principal agent model 218
   Sobel–Takahashi multi-stage model 218
bathing/beaches (sea/freshwater)
   bather shedding 280
   primary classification of beaches 281–2, 282
   quality, monitoring and assessing, management strategies 281–2, 282
   risk, economic approach 211–14
   see also recreational water quality beneficiaries, identifying for cost recovery 343–4
   benefits, economic evaluation of water and sanitation interventions 340–4, 342
bifidobacteria 294
  defined 291
BMJ guidelines, economic evaluation 334–5
Brazil, incidence of endemic GI disease 78
California standards, coliforms 23–4
Campylobacter infection
disease outbreak causes, UK 263
hypothetical study, drinking water, guideline development in practice 394–401
Netherlands, DALYs 55
Sweden 122–4
Canada
drinking water case studies,
epidemiology/risk assessment 155–6
French–Canadian population, seroprevalence 68
cancer, risk, acceptable 56
case-control studies, epidemiology 144
cause-effect 248–9
Chadwick, Edwin, on public health issues (historical) 228–9
chemical pollutants, TDI 19
chemical risk, vs microbiological risk 258–9
chemical risk paradigm see risk assessment
China, diarrhoeal disease study 79–80
cholera epidemic, Peru, economic evaluation 343
chronogenic substances 299
Clostridia
Clostridium perfringens, defined 290
indicator development 294–5
sulphite-reducing clostridia 281, 290
cohort studies 143–4
coliforms, faecal (FC) 289–93
bacteriophages (phages) 291
Bacteroides fragilis bacteriophages 291
bifidobacteria 291
California standards 23–4
Campylobacter infection 55, 122–4, 263
case studies, recreational water 146–9
coliphages 291, 296
defined 290
defined substrate methods 293
Escherichia coli (E. coli) 54, 281, 290
Guidelines for Water Reuse, USEPA/USAID 370–3
history 289
identification schemes 289–93
Klebsiella 290, 292
membrane filtration method 292
most probable number method 291–2
survival in different media 93
TC quality standard 23
thermotolerant coliforms 290
wastewater, guidelines 28–31
coliphages 291, 296
defined 291
F-RNA 295, 297
indicator 296
communication see risk communication
community-managed drinking water supplies
application of framework 386–8
management by water source committee 387
community-managed waste management,
application of framework 388–9
contingent valuation 349–50
coprostanol 297
cost-effectiveness, and willingness-to-pay 338–9
Critical Control Points (CPs) 269
corrective actions 385
risk management 382–5
crops, pathogen and indicator survival 93
cross-sectional studies 143
Cryptosporidium case studies in risk assessment 55, 166–73, 263
aetiology, management deficiencies 262
caveats 172
identification 300
input exposure variables 167–70
mean oocyst levels estimated by different methods 170
oocyst levels, reservoir samples 168–9
Milwaukee episode (1993) 67, 72
Monte Carlo simulation 166, 171–2
opportunity cost analysis 213
results and point estimates 171, 189
computed point estimates for daily risk 171
summary of trials, daily infection risk 172
cultural theory
and acceptable risk 215–17
fright factors 215–16
media interest 216–17
data collection, BMJ 334
decision-making, environmental health 249–52
defined substrate methods 293
developing countries
DALYs (1990) 50
diarrhoeal disease 62–3, 78–80
drinking water treatment systems 362
economic evaluation
interventions in water and sanitation 331–57
Index 415

water and sanitation improvements 98

global burden of disease (1990) study 50

guideline implementation 360–3, 361

problems with setting standards 363–5, 364–5

incidence of endemic GI disease 76–7, 74–80

tourism 379

wastewater treatment systems 362

diarrhoeal disease

studies 62–3, 79–80

travellers’ diarrhoea 78

see also coliforms; infections; streptococci; specific organisms

disability

classes and indicator diseases 47

measuring 46–7

see also DALYs

Disability Adjusted Life Years (DALYs) 52–6

causes of DALYs 96–88

definitions 45

level of acceptable risk 56

lost years of life (YLL) 45

years lived with disability (YLD) 45–6

developed and developing regions (1990) 50

GI disease 52–4

chain model 52–4

global burden of disease (GBD) study 50, 43–59

guidelines, use in derivation 52–6

infection with thermophilic Campylobacter, Netherlands 55

integrating health effects of exposure one agent 54–5

several agents 55

disease burden approach

risk, acceptable 35–8, 56, 211

see also global disease burden; infectious disease

disease process, conceptual model 176, 181

DNA sensing 303

DNA/RNA probe-based RNA targets 303

dose–response analysis 163–6, 187–8

best-fit dose–response parameters 165

chemical risk paradigm 163–5

classical risk assessment framework 257

exponential and beta-Poisson functions 164

population 5

drinking water quality

case studies

epidemiology, risk assessment 155–6

rotavirus disease 180

Cryptosporidium oocysts, reservoir raw water samples 168

hypothetical study of Campylobacter sp.

acceptable risk and health targets 396–7

assessment of environmental exposure 394–6

public health status 400–1

risk management 397–400

trial study setting 394

inequality of risk 221

ingestion, lognormal distribution model 167

and microbiological risk 259, 263

pollution by storm run-off 260

reverse-osmosis filters, in intervention studies 144–5, 155

under-reporting of infectious disease 131

USA (1995–1996) 127

see also quality audit (QA)

drinking water quality guidelines (GDWQ) 18–22

European guidelines 18

faecal indicator organisms 20–1

indicators 4

and international/national guidelines 132–3

operational/national guidelines 21–2

pathogens, reviewed in GDWQ 20

drinking water treatment systems 142–2

application of framework 386–8

developed vs developing countries 362

ecological/correlational studies 142–2

economic evaluation and priority setting, interventions in water and sanitation 331–57

application of guidelines 340–55

benefit inclusion 340–4

benefits to society of interventions 342

identifying beneficiaries for cost recovery 343–4

benefit valuation 346–50

contingent valuation 349–50

household production function 348

market price of goods and activities 346–8

methods of valuation 347

revealed preferences 348–9

BMJ guidelines 334–5

comparisons with health interventions 332

cost effectiveness and willingness to pay for services 338–9
economic evaluation and priority setting, interventions in water and sanitation
cost effectiveness and willingness to pay for services (cont’d)
cost inclusion 344–5
categorisation of health interventions 345
discounting future costs and benefits 350–2
present value of future incomes and
discount rates 351
disease costs to society 82–3
effectiveness 352–4
framework 333–6, 340–54
identifying beneficiaries for cost recovery 343–4
risk of bathing vs costs of treatment 211–14
uncertainty 352–4
willingness-to-pay 336–7, 338–9
ELISA 300
endemic level of disease, defined 234
enterococci 290
defined 290
environmental exposure to disease
assessment 10, 188
chemical risk paradigm 162–3
drinking water, avoidance of acute GI
infection 394–401
harmonised risk assessment 10
measured 395–6
predictive 395
risk 396
environmental health, decision-making 249–52
epidemic, defined 234
epidemiology and risk assessment 135–60
analytical studies
case-control studies 144
cohort studies 143–4
cross-sectional studies 143
ecological or correlational studies 142–2
relationship between exposure and disease 139
case studies 146–56
drinking water 155–6
non-exposure-related risk factors for
gastroenteritis 148
recreational water 146–9
wastewater reuse
exposure and degree of storage 152
Mexico 150–5, 201
descriptive and analytical 241–2
elements of study 136–41
epidemiological risk, types 238–9
evaluation of chance and bias 139–41
formulation of question or hypotheses 137
measurements of exposure and disease
status 138–9
policy-making 242
practitioners’ skills 238–42
selection of exposure indicators 138
selection of study populations 137
setting or evaluating microbiological
guidelines 145–6
summary/discussion 157–8
surveillance, public health 240–1
types
analytical 142–4
descriptive 141–2
experimental or intervention studies 144–5
Escherichia coli (E. coli) 54, 281, 290
confirmation 291–2
defined 290
O157:H7 300
toxins 54
EU, disease outbreaks, (1986-1996), under-
reporting 131
EU guidelines
drinking water quality 18
recreational water quality, microbiological
guideline design 33
excreta disposal/excreta management see
sanitation
excreta-related infections see faecal indicator
microorganisms; infections
experimental studies, epidemiology, risk
assessment 144–5
extrapolation uncertainty 218
faecal indicator organisms 376–8
animal faeces (warm-blooded) 294,
295
current applicability 303–4
drinking water quality guidelines (GDWQ)
20–1
faecal–oral pathogens, transmission routes 95
key 290
transmission routes, pathogen and indicator
survival in different media 93
see also coliforms, faecal (FC); streptococci,
faecal (FS)
faecal sludge treatment, technical options 106
faecal sterol biomarkers 297
faeces of warm-blooded animals, microbiological
water quality indicators 294, 295
FISH (fluorescence in situ hybridisation) 302
framework for guideline development
community-managed drinking water supplies 386–8
community-managed waste management 388–9
economic evaluation, interventions in water and sanitation 333–6, 340–54
elements and implementation, harmonised assessment of infection risk 9–16
hypothetical studies, Stockholm 393–410
drinking water, study of *Campylobacter* sp. 394–401
recreational water, study of avoidance of acute GI infection 401–6
wastewater reuse, study of hepatitis A infection 406–10
quality audit (QA) 191, 191–9
risk assessment 256–8
‘framing effect’, acceptable risk 215
France, waterborne disease study 69, 72–3
freshwater, pathogen and indicator survival 93
fright factors, cultural theory 215–16
gastrointestinal disease see infections
gen sequence based methods 301–2
giardiasis
disease outbreak causes, UK 263
identification 300
risk, US goal 11, 209
transmission 173
global burden of disease (GBD) study 43–59
GBD estimate, applications 51–6
international guidelines 57–8
major outcomes of study 47–51
causes of DALYs by developed and developing regions (1990) 50
disease and injury attributable to selected risk factors 50
use of DALYs in guideline derivation 52–6
measuring population health 44–7
measuring disability 46–7
years of life lost 45
years lived with a disability 45–6
problems of assessing disease burden in relation to water quality 56–7
groundwater pollution, risks from sanitation 105
guideline development framework
hypothetical studies 393–410
discussion 410
drinking water, study of *Campylobacter* sp. 394–401
recreational water, study of avoidance of acute GI infection 401–6
wastewater reuse, study of hepatitis A infection 406–10
guideline implementation 359–74
case study 370–3
background 370
methodology 371
results 372
risk of infection and disease from various pathogens 372
cost implications 369
current position 17–41
and international/national guidelines 38
developing countries
compliance with standards 361
vs developed 360–3
problems with setting standards 363–5, 364–5
selecting water and wastewater treatment systems 362
stepwise implementation of standards 366–9
and international guidelines/national regulations 373
principle of equity 369
standards, improvement of water quality 367
wastewater, faecal coliforms (FC) 28–31
see also drinking water; recreational water; wastewater and excreta use
*Guidelines for Water Reuse*, USEPA/USAID 370–3
Guillain–Barré syndrome 54, 55
harmonised assessment of risk 1–16
harmonised framework for guideline development see framework for guideline development
hazard analysis and acceptable risk, microbiological quality 378–9
risk management plan 381–5
Hazard Analysis and Critical Control Points (HACCP) 3, 162, 187, 265–70
principles 265
scoring risks, Sydney Water, Australia 267–8, 272–4
worksheet 267, 275
health education and behavioral modification 246
example of risk communication 319

health impact assessments (HIAs) 250–1
health targets, benefits 13
hedonic pricing 348
helminths
standards 28, 32
survival in different media 93
hepatitis A
case study in wastewater irrigation 372
wastewater reuse, guideline development framework, hypothetical study 406–10
hepatitis E 378
hypothetical studies see risk, acceptable

immunity, acquired 236–7
immunomagnetic separation, and other rapid culture based methods 301
index organism, defined 288
indicator see faecal indicator organisms
infections (general/gastrointestinal) 61–89
aetiology 62–3
chain model 53
costs to society 82–3
see also economic evaluation
endemic waterborne disease in industrialized countries 68–74, 81–2
health significance of bacterial regrowth 72
intervention studies 70–2
environmental health decision-making 249–52
exposure indicators, epidemiology and risk assessment 138
faecal sludge, see also wastewater and excreta in agriculture and aquaculture
faecal streptococci and enterococci 293–4
harmonised assessment of risk 1–16
acceptable risk 10–13, 207–26
expanded version 9
framework elements and implementation 9–16
further development 16
future guidelines 6–9
indicators and good practice requirements by guideline area 4
necessity 4–6
public health status 15–16
risk management 13–14
World Health Organization guidelines on water quality 2

incidence
developing countries 74–80
endemic disease 74–9
industrialized countries 63–74, 81–2
indicator diseases 47
inequality of risk 221
and international guidelines/national regulations 112
and international/national guidelines 83, 158
interventions 247–50
outbreak, defined 234
risk factors, non-exposure-related 148
routes of transmission 231–4
surveillance and waterborne outbreaks 117–34
Sweden 118–24
USA 124–8
transmission routes 92–6, 231–2
faecal–oral pathogen transmission routes 95
under-reporting 130–2
water-related diseases 232
information
trusted sources 324
see also risk communication
Inoviridae 296 298
International Life Sciences Institute (ILSI) 177–8
intervention measures
epidemiology, risk assessment 144–5
public health 245–50
risk management 404–5
Israel, Ascaris infection 141–2
Klebsiella infection 290, 292
detection 300
latrines see sanitation, technical options
Legionella infection, detection 300, 302
Leviviridae 296 298
Lubbock, health effect study 68
mathematical modelling (quantitative risk assessment) 242–3
media interest
cultural theory 216–17
triggers 321
membrane filtration method, coliforms (FC) 292
Mexico, wastewater reuse case studies, epidemiology 150–5, 201
microbiological methods 299–303
fast detections using chromogenic substances 299
microbiological methods (cont’d)
future developments 302–3
gene sequence based methods, FISH and
PCR 301–2
immunomagnetic separation (IMS)/culture
and other rapid methods 301
monoclonal and polyclonal antibodies 300
most probable number (MPN) method 291–2
microbiological risk, drinking water 259–64
vs chemical risk 258–9
multiple barriers 261
origins 259–60
outbreak aetiology 262–4
cryptosporidiosis outbreaks, management
deficiencies 262
scenarios 263
pollution by storm run-off 260
quantitative assessment (QMRA) 162
sources 259
microbiological water quality indicators 287–314
current applicability of faecal indicators 303–4
emerging microbiological methods 299–303
indicator development 289–97
bacteriophages 295–7
definitions, indicator and index
microorganisms 288
faecal sterol biomarkers 297
sulphite-reducing clostridia and other
anaerobes 281, 190, 294–5
and international/national guidelines 304
pathogen models and index microorganisms
297–9
see also coliforms; streptococci
microbiological water quality regulation 378–89
defining hazards and acceptable levels of risk
378–9
drinking water supply 386–8
and international guidelines/national
regulation 377–8, 389
objectives 376–8
risk management 380–5
critical control points 269, 382–5
verification and auditing 385
wastes management 388–9
Microviridae 296, 298
monitoring systems, matching critical control
points 384–5
monoclonal and polyclonal antibodies 300
Monte Carlo simulation, risk assessment 166, 171–2
most probable number (MPN) method 291–2
multiple-tube fermentation (most probable
number method) 291–2
Myoviridae 298
nematodes
cohort studies 143–4
standards 28
survival in different media 93
see also ascariasis
Netherlands, Campylobacter infection, DALYs 55
null hypothesis 137
opportunity cost, defined 213
outbreak
defined 234
types 234–5
pathogens
inactivation 108–9
pathogen–host properties 25
survival in different media 93
survival on soils and crops, warm climate 26
PCR (polymerase chain reaction) 301–2
Peru, cholera epidemic, economic evaluation 343
phages see bacteriophages; coliphages
Philippines, diarrhoeal disease study 80
Plesiomonas shigelloides 127–8
Podoviridae 296, 298
policy-making, epidemiology, risk assessment 242
political resolution of risk issues 217–22
bargaining, models 218–19
pre-defined probability approach 208–10
public acceptance 214–17
satisficing 220
stakeholder inequality 220–2
inequality of health risks 221
political will, interventions in public health 246
polyclonal antibodies 300
population dose–response analysis 5
population health measurement 44–7
see also DALYs; risk, acceptable
poverty, as determinant of disease 236
preventive medical care, public health 245
process adequacy (validation), critical control
point, risk management 383–4
process indicator, defined 288
protozoan oocysts
drinking water ingestion case studies 166–73
see also Cryptosporidium
Water Quality: Guidelines, Standards and Health

public health 227–54

acceptance of risk 214–17

see also risk, acceptable

biological and physical sciences 243–4

defined 228

demography 244

and international/national guidelines 252–3

interventions 245–50

classification 245–6

control of environment 246

cultivating political will 246

health education and behavioral modification 246

preventive medical care 245

waterborne disease, cause-effect 248–9

metaphor for surveillance 229–30

nature and determinants of disease 230–7

acquired immunity 236–7

determinants of ill health 235–7

endemic/epidemic disease and outbreaks 234–5

environmental exposure 235–6

poverty 236

pre-existing health 236

routes of transmission 231–4

classification of water-related diseases 232

practitioners’ skills and tools 237–44

epidemiology, descriptive and analytical 238–42

mathematical modelling (quantitative risk assessment) 242–3

policy making 242

social and behavioural sciences 244

surveillance 240–1

risk acceptance, political resolution 15–16, 214–17

setting standards 223–4, 250–2

public information, trusted sources 324

Quality Adjusted Life Years (QALYs), costs 213

quality audit (QA) 185–206

applications 201–3

case study 201–3

stages, water supply pathway 202

wastewater reuse, and ascariasis 203

and international/national guidelines 204–5

outline QA, studies on drinking water consumption 200

proposed framework 191, 191–9

method 195

observation 194–5

outline 193–4

output 196–7, 199–201

peer review 197

validity 197–8

science in risk estimates 189–90

uncertainty 187–9

Cryptosporidium in tap water 189

quality indicators see microbiological water quality indicators

quantitative microbiological risk assessment (QMRA) 162

quantitative risk assessment (QRA), public health 242–3

recreational water quality

bacterial probability density function 35–6

case studies 146–9

coliforms, faecal (FC) 146–9

epidemiology, risk assessment 146–9

hypothetical study of avoidance of acute GI infection

acceptable risk and health targets 403

assessment of environment exposure 402

microbiological data 402

public health status 406

risk management 403–5

trial study setting 401

indicators 4

marine 280–1

microbiological guideline design 33–8

acceptable risk 33–8

combining epidemiological and environmental data 35–7

current position 32–8

dose–response curve, faecal streptococci and gastroenteritis 35

epidemiology 33–4

estimated disease burden 37

probability density function of faecal streptococci 36

water quality data 34–5

monitoring and assessment classes of health risk 277

human faecal contamination 278–80

management strategies 276–84

microbiological quality 33, 280–1

new approach 276–8

principal sources of human faecal contamination 278–80

riverine discharges 279–80

sewage discharges 278–9, 279
monitoring and assessment (cont’d)

under-reporting of disease, outbreaks (1986–1996) 131
and wastewater contamination 276–8
see also bathing/beaches
relative risk 238
reverse-osmosis filters, in intervention studies 144–5, 155
ribosomal RNA (16S rRNA), FISH 302
risk
absolute, attributable, relative 238
defined 256
pathways, omission, examples 198
risk, acceptable 10–13, 207–26
vs accepted 210–11
bargaining, Sobel–Takahashi multi-stage model 218
of cancer
‘essentially zero’ level as gold standard 208
vs infection 56
and cultural theory 215–17
currently tolerated approach 210–11
definitions 56, 208–9
disease burden approach 35–8, 211
economic approach 211–14
‘framing effect’ 215
and hazards, microbiological quality 378–9
hypothetical studies
drinking water, study of Campylobacter sp. 394–401
recreational water, study of avoidance of acute GI infection 401–6
wastewater reuse, study of hepatitis A infection 406–10
and international/national guidelines 225
political resolution of issues 217–22
pre-defined probability approach 208–10
public acceptance 214–17
setting standards 223–4, 250–2
uncertainty 186, 187–9, 217
risk assessment 161–83
background 161–2
chemical risk paradigm 162–6, 247
best-fit dose–response parameters 165
dose–response analysis 163–5
exponential and beta-Poisson dose–response functions 164
exposure assessment 162–3
hazard assessment 162
risk characterisation 165–6
risk management 166
classical framework 256–8
dose–response assessment 257
elements and implementation 9–16
hazard identification 256
risk characterisation 257–8
Cryptosporidium case studies 55, 166–73
dynamic epidemiologically-based model 173–4
environmental exposure assessment 10
expanded framework 9
Health & Safety Executive (HSE), UK 208–9
health targets, benefits 13
and international/national guidelines 181
rotavirus disease process case study 174–80
summary/discussion 180–1
see also quality audit; epidemiology
risk characterisation
chemical risk paradigm 165–6, 247
management strategies 257–8
Monte Carlo approach 166, 171–2
rotavirus disease process case study 179–80
risk communication 317–30
communication techniques 325–27
empathy 326
silence 327
uncertainty 326–7
education example 319
evaluation 327–8
functions 317–18
long term trust 324–5
media interest
cultural theory 216–17
triggers 321
risk management cycle 317
risk perception 323
situation management 319–24
and WHO guidelines 328–9
risk management 319–24, 255–86, 397–400
analytical verifications 399–400
anticipating concerns 323
approaches 380–1
assessment, recreational water quality 276–84
audience focused communication 321
audit measures 404
Australia 272–6
Melbourne 274–6
Sydney 267–8, 272–4
basic control 397
chemical vs microbiological risk 258–9
risk management (cont’d)
chemical risk paradigm 166, 247
classical risk assessment framework
dose–response assessment 257
exposure assessment 257
hazard identification 256
risk characterisation 257-8
critical control point 382–5
corrective actions 385
identification 382–3
monitoring 384–5
process adequacy (validation) 383–4
verification and auditing 385
Cryptosporidium case study 166–73
current condition 398
cycle, risk communication 317
definitions 256–8
harmonised assessment 13–14
and international/national guidelines 284
intervention measures 404–5
key risk points and audit procedures 398–9
long term trust 324–5
managing people and processes 271–2
media triggers 321
microbiological quality regulation 380–5
microbiological risk 259–64
negative feedback and outrage 322–3
risk perception 323
objectives 404
origins 258–64
public information sources 324
trusted sources of impartial advice in UK 324
recreational water quality assessment
classes of health risk 277
microbiological quality 280–1
primary classification of beaches 281–2, 282
principal sources of human faecal contamination 278–80
systems approach 265–71
critical control points 268–9
critical limits 269–70
flow chart and flow chart verification 266
hazard analysis 265, 267–8
monitoring and corrective actions 270–1
record keeping, validation and verification 271
team skills and resources 266
water description and use 266–7
theory/reality 264–5
verification information 405
water quality objectives 397–8
see also Hazard Analysis and Critical Control Points; risk communication
riverine discharges, and recreational water quality 279–80
rotavirus disease process case study 174–80, 372
average daily prevalence, children exposed to drinking water contamination 180
conceptual model 176
implementation 177–80
International Life Sciences Institute (ILSI) 177–8
problem formulation and analysis 178
risk characterisation 179–80
schematic application of ILSI framework 178
Salmonella infection
case study in wastewater irrigation 372
detection 300
disease outbreak causes, UK 263
saltwater, pathogen and indicator survival 93
sanitation 96–111
containment 109–11
selected excreta management and treatment options 110–11
diarrhoeal disease, water and sanitation improvements 98
global coverage (in 1990 and 2000) and Africa 99
health and poor sanitation 96–8
pathogen inactivation 108–9
organism survival in faecal sludge 109
sanitation coverage 98–100
scenario, low-income neighbourhood 99–100
sewerage system, costs 107
technical options 102–8
containment efficiency 109
conventional waterborne, disadvantages 107
faecal sludge treatment 106
groundwater pollution risks from on-site sanitation 105
off site (sewered) sanitation 106–7
on-site installations 102–4
septic tanks 104
VIP latrine and double vault no-mix latrine 103
wastewater treatment 107–8
satisficing, political resolution of risk issues 220
selection bias 137
seroprevalence, selected enteric pathogens, French–Canadian population 68
sewage discharges, recreational water quality 278–9, 279
sewage treatment see wastewater treatment
shellfish, faecal–oral pathogen transmission routes 95
small round structure virus (SRSV) 128
Sobel–Takahashi multi-stage model, bargaining 218
soils, pathogen and indicator survival 93
soils and crops, pathogens 26
stakeholder inequality, political resolution of risk issues 220–2
sterol biomarkers 297
storm run-off, microbiological risk 260
strepococci, faecal (FS) 290
absolute numbers 37
defined 290
and enterococci 281–2
gastroenteritis 35–6
thermotolerant/faecal streptococci ratio 294
study design, BMJ 334
sulphite-reducing clostridia, indicator development 281, 290, 294–5
surveillance systems epidemiological, public health 240–1
waterborne infections (general) 117–34
Sweden 118–24
clinical and laboratory surveillance 121–4
diagnosis 122
initially reported and actual numbers 123
risk factors identified 124
recognition of outbreaks 120–1
water sampling 121
waterborne disease 1980–99 118–20, 119
Siphoviridae 296, 298, 292
tap water see drinking water
tolerable daily intake (TDI), chemical pollutants 19
tourism developing countries 379
travellers' diarrhoea 78
transmission routes
GI infections 231–4
giardiasis 173
travellers' diarrhoea, developing countries 78
turbidity bacterial, endemic waterborne disease, industrialized countries 72
Milwaukee, USA 72
UK
GI disease, studies 64
Health & Safety Executive (HSE), risk assessment 208–9
uncertainty 186, 187–9
extrapolation uncertainty 218
risk communication 326–7
types 217
urine as crop fertilizer 102
USA
FoodNet site 65–6
recreational water quality, microbiological guideline design 33
USA disease outbreaks
Cleveland study of GI disease 63–4
Cryptosporidium Milwaukee (1993) 67, 72
New York 166–73
management 128–30
Minnesota study 127
Philadelphia study 73
Tecumseh study of GI disease 63–4
waterborne outbreaks (WBDOs) 124–8, 127
USEPA (Environmental Protection Agency) standards 199, 208, 210
and World Bank case study in wastewater irrigation 370–3
recommendations 372
utility, defined 213
validation, critical control point, risk management 383–4
Vibrio cholerae, case study in wastewater irrigation 372
viruses enteric 67–8
human enteric 297–9
seroprevalence, French–Canadian population 68
small round structure virus (SRSV) 128
wastewater and excreta in agriculture and aquaculture 22–32
as benefit 24–5
wastewater and excreta in agriculture and aquaculture (cont’d)
case studies
epidemiology 149–55
Mexico 149–55, 201
community management, application of framework 388–9
derivation of WHO (1989) guidelines 27–32
controversy on wastewater reuse 32
incorporation into standards 31–2
main features 30–1
model of reducing health risks 30
recommended microbiological quality 28
effect of exposure and degree of storage 152
indicators 4
irrigation, World Bank and WHO, case study 370–3
pathogen–host properties 25
and recreational water quality 276–8
reuse case studies, epidemiology, risk assessment 149–55
WHO, reuse guidelines, history 23–7
see also quality audit (QA), wastewater treatment
wastewater reuse, hypothetical study of hepatitis A infection
acceptable risk and health targets 408
assessment of environmental exposure and risk 407–8
assumptions and data inputs 407–8
drip irrigation 409
public health status 409–10
risk management 408–9
trial study setting 407
wastewater treatment 107–8, 409, 278–9, 279
systems, developed vs developing countries 362
waste stabilization ponds (WSP) 24, 27
organism survival periods 109
recommended microbiological quality guidelines 24, 27
see also wastewater and excreta in agriculture and aquaculture
Water Decade 5
water quality indicators see microbiological water quality indicators
water source committee, community-managed drinking water supplies 387
waterborne outbreaks (WBDOs) see USA WHO
carcinogens, acceptable risk defined 208
drinking water quality guidelines (GDWQ) 18–22
estimates of world disease (1996) 62
health, defined 230
Health Guidelines for the Use of Wastewater 370–3
Stockholm, hypothetical studies, harmonised framework for guideline development 393–410
wastewater reuse guidelines 23–7
water quality, harmonised assessment 2
and World Bank, case study in wastewater irrigation 370–3
willingness-to-pay, studies 336–7, 338–9
World Bank, and WHO, case study in wastewater irrigation 370–3
years of life lost (YLL), definitions of DALYs 45
years lived with disability (YLD) 45–6