HEALTH ASPECTS OF PLUMBING
Contents

Preface vii
Acknowledgements ix
Abbreviations and acronyms x

1. **Introduction**
 1.1 Ensuring water safety in production and distribution systems 2
 1.2 Removal of liquid waste 3
 1.3 Risk of contamination through cross-connections 4
 1.4 Periodic inspection 5

2. **Basic principles of safe drinking-water supply** 6
 2.1 Water quantity 6
 2.2 Water quality and safety 6
 2.3 Public drinking-water supplies 7

3. **Hazards in drinking-water supply and waste management** 10
 3.1 Microbial risks: waterborne infectious disease 10
 3.2 Chemical risks 13
 3.3 Other risks 15

4. **Water safety plans in the operation and management of water systems** 18

5. **The role of plumbers in risk assessment and risk management** 20
 5.1 Risk recognition 20
 5.2 Risk evaluation and analysis 21
 5.3 Risk abatement 21
 5.4 Risk acceptance and risk transfer 22

6. **Principles of effective plumbing systems** 23
 6.1 Water supply goals 23
 6.2 Liquid waste disposal goals 25
 6.3 Plumbing goals 27

7. **Codes of practice for plumbing** 28
 7.1 A sample model code of practice 30
 7.2 Applications for approval to install plumbing systems 33
 7.3 Setting plumbing standards 34
 7.4 Quality assurance and testing 35
 7.5 Disinfection of new plumbing installations 37

8. **Implementation of the plumbing code of practice** 40
 8.1 Application and approval process 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4</td>
<td>Guidance for protective devices</td>
<td>93</td>
</tr>
<tr>
<td>15.5</td>
<td>Guidance for sanitary waste systems</td>
<td>94</td>
</tr>
<tr>
<td>15.6</td>
<td>Storm water drainage systems</td>
<td>95</td>
</tr>
<tr>
<td>15.7</td>
<td>Temporary plumbing installations and connections</td>
<td>96</td>
</tr>
<tr>
<td>16.</td>
<td>Storm water drainage</td>
<td>98</td>
</tr>
<tr>
<td>16.1</td>
<td>Discharge into storm water channels or pipes</td>
<td>98</td>
</tr>
<tr>
<td>16.2</td>
<td>Combined sewers</td>
<td>99</td>
</tr>
<tr>
<td>16.3</td>
<td>Soakaways</td>
<td>99</td>
</tr>
<tr>
<td>16.4</td>
<td>Rainwater tanks</td>
<td>100</td>
</tr>
<tr>
<td>16.5</td>
<td>Rainwater intensity and roof drainage</td>
<td>100</td>
</tr>
<tr>
<td>17.</td>
<td>Intermediate and communal models for drinking-water supply and sanitation</td>
<td>103</td>
</tr>
<tr>
<td>17.1</td>
<td>Intermediate types of drinking-water supply and sanitation</td>
<td>103</td>
</tr>
<tr>
<td>17.2</td>
<td>Household water treatment</td>
<td>105</td>
</tr>
<tr>
<td>17.3</td>
<td>Communal systems for drinking-water supply and sanitation</td>
<td>105</td>
</tr>
<tr>
<td>18.</td>
<td>Conservation of water in public and domestic supply systems</td>
<td>107</td>
</tr>
<tr>
<td>18.1</td>
<td>Special problems associated with public buildings and communal accommodation</td>
<td>108</td>
</tr>
<tr>
<td>18.2</td>
<td>Leakage and wastage in the public drinking-water supply system</td>
<td>108</td>
</tr>
<tr>
<td>18.3</td>
<td>Leakage and wastage from private drinking-water supply systems</td>
<td>109</td>
</tr>
<tr>
<td>18.4</td>
<td>Use of meters to reduce wastage and excess consumption</td>
<td>109</td>
</tr>
<tr>
<td>18.5</td>
<td>Minimizing systematic excessive and wasteful use of water</td>
<td>110</td>
</tr>
<tr>
<td>18.6</td>
<td>Minimizing water usage in flushing cisterns</td>
<td>111</td>
</tr>
<tr>
<td>18.7</td>
<td>Minimizing water wastage in lawn and garden irrigation</td>
<td>112</td>
</tr>
<tr>
<td>18.8</td>
<td>Attempts to reduce water usage through intermittent supply</td>
<td>112</td>
</tr>
<tr>
<td>19.</td>
<td>Wastewater use</td>
<td>114</td>
</tr>
<tr>
<td>19.1</td>
<td>Use of greywater</td>
<td>114</td>
</tr>
<tr>
<td>19.2</td>
<td>Use of wastewater</td>
<td>115</td>
</tr>
<tr>
<td>19.3</td>
<td>Management of dual water systems</td>
<td>115</td>
</tr>
<tr>
<td>19.4</td>
<td>Identification of potable and non-potable drinking-water systems</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Glossary of plumbing and other terms used in the text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Contributing authors</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>126</td>
</tr>
</tbody>
</table>

Figures

- Figure 15.1 Atmospheric vacuum breaker 86
- Figure 15.2 Atmospheric vacuum breaker (normal flow and backflow conditions) 87
- Figure 15.3 Double check valve assemblies 88
- Figure 15.4 Pressure vacuum breaker 88
- Figure 15.5 Backsiphonage illustration 89
- Figure 15.6 Reduced pressure principle backflow preventer 90
- Figure 15.7 Shipyard backflow contamination 91
Figure 15.8 Grease trap
Figure 15.9 Grease interceptor
Figure 15.10 Precast concrete sand and oil interceptor

Tables
Table 2.1 Typical volumes of fluid intake (from food and water) required for hydration
Table 11.1 Typical demands for various uses
Table 11.2 Minimum internal diameter of water pipes to plumbing fixtures
Table 11.3 Gradients to produce minimum and maximum velocities in drains
Table 14.1 Advantages and disadvantages of vacuum systems (versus gravity systems)
Table 14.2 Comparison of installation and operation requirements of drainage systems
Table 14.3 Fixture unit values for some common plumbing fixtures
Table 14.4 Peak water demand of plumbing fixtures
Table 14.5 Maximum loads for horizontal fixture branches and building drains or sewers
Table 16.1 Gutter slopes and roof drainage: rainfall intensity 100 mm per hour
Table 16.2 Roof areas drained by vertical downspouts: rainfall intensity 100 mm per hour
Table 16.3 Capacities of horizontal storm drains: rainfall intensity 100 mm per hour
Table 17.1 Service level descriptors of water in relation to hygiene
Table 19.1 Suitability for reuse of different grades of water
Table 19.2 Minimum length of colour field and size of letters

Case studies
Case study 1. SARS in Hong Kong
Case study 2. Drinking-water supply and waste removal in Dhaka
Case study 3. Chlordane backflow or backsiphonage
Case study 4. Backsiphonage from a hose
Case study 5. Shipyard cross-connection
The United Nations has declared 2005–2015 the International Decade for Action “Water for Life”, setting a world agenda that focuses increased attention on water-related issues. This initiative is of extraordinary importance in a world where preventable diseases related to water and sanitation claim the lives of about 3.1 million people a year, most of them children less than five years old. Of these, about 1.6 million people die from diarrhoeal diseases associated with lack of safe drinking-water and adequate sanitation.

By including safe drinking-water supply and sanitation in the Millennium Development Goals, the world community has acknowledged the importance of their promotion as development and health interventions and has set a series of goals and targets accordingly. Goal 7, target 10 requests the world to “halve by 2015 the proportion of people without sustainable access to safe drinking-water and basic sanitation”. The task is huge: in 2002, 1.1 billion people (two thirds of them in Asia, and 42% of the population in sub-Saharan Africa) lacked access to improved water sources. At least 2.6 billion people lacked access to improved sanitation; over half of them live in China and India. Only 31% of rural inhabitants in developing countries have access to improved sanitation, versus 73% of urban dwellers (WHO 2004b). Achieving the Millennium Development Goal drinking-water and sanitation target requires that 97 million additional people gain access to drinking-water services and 138 million additional people to sanitation annually up to 2015.

The United Nations Committee on Economic, Cultural and Social Rights has issued a statement declaring access to safe drinking-water to be a human right. The declaration reads:

“Water is fundamental to life and health. The human right to water is indispensable for leading a healthy life in human dignity. It is a prerequisite to the realization of other human rights.”

The World Plumbing Council and the World Health Organization, working within the spirit of those resolutions, present this document on health aspects of plumbing noting that sustainable health, especially for children, is not possible without access to safe drinking-water and basic sanitation facilities. This publication is dedicated to assisting in achieving the best possible plumbing levels to ensure the highest health benefits from use of sound plumbing practices. This is
especially important at a time when only 50% of the world population has access to piped drinking-water systems within the property and 31% has piped sanitation facilities connected to a public sewer system. The World Health Organization and United Nations Children’s Fund statistics on drinking-water and sanitation indicate a sharp acceleration of efforts towards access to types of drinking-water and sanitation facilities requiring a considerable level of plumbing. It is thus vital that developing countries adopt or improve their plumbing practices taking into account the need to minimize the current and future risks of epidemics and diseases associated with poor plumbing.

The World Health Organization and the World Plumbing Council will feel rewarded if this document achieves its ultimate aim: to play a strategic role in facilitating the adoption of good plumbing practices in developing countries to ensure the health gains and well-being expected from such systems.
This book was produced through a partnership between the World Health Organization and the World Plumbing Council. It has been edited by Professor Charles Watson (Executive Dean of Health Sciences at Curtin University of Technology, Perth, WA, Australia) with assistance from Mary Watson (Sydney, NSW, Australia), Dale Courtman and Andy Watts (Institute of Plumbing and Heating Engineering, United Kingdom), and Robert Shepherd and Gabriella Davis (International Association of Plumbing and Mechanical Officials, Ontario, California, USA); and by Dr Joseph A. Cotruvo (Joseph Cotruvo & Associates, Environmental and Public Health Consultants, Washington, D.C., USA). A list of other contributing authors can be viewed on page 125. Professor H. Feroz Ahmed of Bangladesh University of Engineering and Technology and Sergio R. Mendonca and R. Rojas Vargas of the Pan American Center for Sanitary Engineering and Environmental Sciences (CEPIS/PAHO/WHO) are thanked for their excellent inputs. The following World Health Organization specialists provided relevant technical inputs to the development of this document: Robert Bos, Richard Carr, Bruce Gordon and Federico Properzi. Jamie Bartram (World Health Organization) provided the strategic direction throughout this process. José Hueb (World Health Organization) coordinated the technical revision and production of the document.
Abbreviations and acronyms

CDC Centers for Disease Control and Prevention (USA)
CPVC chlorinated polyvinylchloride
HPC heterotrophic plate count
ISO International Organization for Standardization
PE polyethylene
PVC polyvinylchloride
WHO World Health Organization
WSP water safety plan