EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION
Geneva, 24 – 28 August 2020

Guidelines for assuring the quality, safety, and efficacy of plasmid DNA vaccines

Proposed revision of Annex 1 of WHO Technical Report Series, No. 941

NOTE:

This document has been prepared for the purpose of inviting comments and suggestions on the proposals contained therein, which will then be considered by the Expert Committee on Biological Standardization (ECBS). Publication of this early draft is to provide information about the proposed revision of Guidelines for assuring the quality and nonclinical safety evaluation of DNA vaccines, Annex 1, WHO Technical Report Series No. 941 to a broad audience and to improve transparency of the consultation process.

The text in its present form does not necessarily represent an agreed formulation of the ECBS. Written comments proposing modifications to this text MUST be received by 13 June 2020 using the Comment Form available separately and should be addressed to: Department of Health Products Policy and Standards (HPS), World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland. Comments may also be submitted electronically to the Responsible Officer: Dr Hye-Na Kang at kangh@who.int.

The outcome of the deliberations of the ECBS will be published in the WHO Technical Report Series. The final agreed formulation of the document will be edited to be in conformity with the second edition of the WHO style guide (KMS/WHP/13.1).
Guidelines for assuring the quality, safety, and efficacy of plasmid DNA vaccines

Introduction

Background

Purpose and scope

Terminology

General considerations

Part A. Guidelines on manufacturing and control of plasmid DNA vaccines

Part B. Nonclinical evaluation of plasmid DNA vaccines

Part C. Clinical evaluation of plasmid DNA vaccines

Part D. Guidance for National Regulatory Authorities

Authors and acknowledgements

References

Appendix 1. Model summary protocol for the manufacturing and control of plasmid DNA vaccines

Appendix 2. Model NRA Lot Release Certificate for plasmid DNA vaccines
Guidelines published by the World Health Organization (WHO) are intended to be scientific and advisory in nature. Each of the following sections constitutes guidance for national regulatory authorities (NRAs) and for manufacturers of DNA vaccines. If an NRA so desires, these WHO Guidelines may be adopted as definitive national requirements, or modifications may be justified and made by the NRA. It is recommended that modifications to these Guidelines are made only on condition that such modifications ensure that the product is at least as safe and efficacious as that prepared in accordance with these WHO Guidelines set out below.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCVMN</td>
<td>Developing Countries Vaccine Manufacturers Network</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECBS</td>
<td>Expert Committee on Biological Standardization</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
</tr>
<tr>
<td>GMO</td>
<td>Genetically Modified Organism</td>
</tr>
<tr>
<td>GMP</td>
<td>Good Manufacturing Practice(s)</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HPV</td>
<td>Human Papillomavirus</td>
</tr>
<tr>
<td>IHNV</td>
<td>Infectious Hematopoietic Necrosis Virus</td>
</tr>
<tr>
<td>INN</td>
<td>International Nonproprietary Name</td>
</tr>
<tr>
<td>IU</td>
<td>International Unit(s)</td>
</tr>
<tr>
<td>MCB</td>
<td>Master Cell Bank</td>
</tr>
<tr>
<td>MERS</td>
<td>Middle East Respiratory Syndrome</td>
</tr>
<tr>
<td>NRA</td>
<td>National Regulatory Authority</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>SARS</td>
<td>Severe Acute Respiratory Syndrome</td>
</tr>
<tr>
<td>WCB</td>
<td>Working Cell Bank</td>
</tr>
<tr>
<td>WNV</td>
<td>West Nile Virus</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Introduction

Vaccination involves stimulating the immune system of an individual with an infectious agent or components of an infectious agent but modified in a manner to ensure that the vaccine does not cause undue harm or disease to the vaccinee. Further, efficacious vaccination ensures that when the individual is confronted with that infectious agent, his/her immune system can respond adequately to control the invading organism before it causes overt disease. For over a hundred years, vaccination has been achieved by one of two basic approaches:

- introducing attenuated microorganisms that replicate within the vaccinee without causing disease and synthesize the appropriate immunogens that subsequently stimulate the immune system; or
- introducing into a vaccinee pathogen-specific antigens against which the immune system will react directly.

Since the 1990s, a novel approach to vaccination against a broad array of target antigens and diseases has been in development. This technology involves the direct introduction of plasmid deoxyribonucleic acid (DNA) containing the gene encoding the immunogen against which an immune response is sought into the vaccinee for the in-situ production of the target immunogen(s). This is referred to as plasmid DNA vaccines or DNA vaccines. This approach offers a combination of potential advantages, including the stimulation of both B and T-cell responses, stability of the vaccine across a broad temperature range, absence of infectivity of the immunogen itself, the speed with which the vaccine can be constructed (for example in the face of an epidemic or pandemic), and the relative ease and generic nature of large-scale manufacture. It may be feasible to produce the same DNA vaccine in different facilities in different geographies to facilitate accessibility and availability of the vaccine during routine immunization or outbreak settings, ensuring a more stable supply of vaccine. Further, plasmid DNA is stable, and as such can be stored and delivered efficiently and effectively to rural settings without requiring a cold chain (depending on the formulation). DNA vaccines do not generate anti-vector immunity nor off-target acquired immunity to DNA in the vaccinee. There is no need for biosafety containment as DNA vaccines are not designed to be infectious and the target infectious pathogen is not used in the construction or production of the vaccine. Integration of the vector into the DNA of the vaccinee is not observed. DNA vaccines can be viewed as a platform technology in which the gene insert can be readily changed without necessarily having to change the manufacture or control of the resulting new product (except for immunogen-specific tests for identity and potency). Many scientific publications address the potential of DNA vaccination (1-10).

Immune responses in animal models have been obtained using genes from a variety of infectious agents including influenza virus, hepatitis B virus, human immunodeficiency virus, human papillomaviruses, Marburg virus, Middle East Respiratory Syndrome (MERS) coronavirus, rabies virus, Severe Acute Respiratory Syndrome (SARS) virus, West Nile virus
DNA vaccines are able to generate functional antibodies and both CD4+ and CD8+ T-cell responses. The ability to generate MHC-Class I restricted CD8+ T cells (cytolytic T lymphocytes), which generally are not induced following administration of proteins or inactivated viruses, may be important for key responses against certain pathogens, as well as enabling cross-strain specific responses when many antibody responses are strain-specific. Because the encoded protein is synthesized in vivo by the vaccinee following administration, DNA vaccines can encode membrane-bound proteins, such as full-length HIV Env gp160, instead of solely the soluble versions, such as gp120 (24). This can be important because key
neutralizing epitopes (including broadly neutralizing epitopes against more than one strain of HIV) are located in protein regions that would be excluded, or not formed in a monomeric truncated soluble version. Unlike certain other vectors (such as viral vectors that may be used in a heterologous prime-boost regimen with DNA vaccines), DNA vaccines do not stimulate adaptive immune responses against the vector (plasmid backbone), although the DNA itself can stimulate certain innate immune responses (25). In other words, they do not generate anti-vector immunity, which could blunt antigen-specific responses following multiple administrations.

DNA vaccines would seem ideal for use in boosting immune responses, as they could be used repeatedly (and for different purposes) because they do not generate anti-vector immune responses. However, existing data demonstrate that DNA vaccines seem to excel for priming immune responses. These primed immune responses are boosted by delivery of a heterologous vaccine such as a protein antigen or a different gene-based vector, such that the resulting immune responses are often more potent than if either modality is used alone for both prime and boost, or in the reverse order with the DNA given last (26-33). In some cases, the priming immune response from DNA vaccines is only revealed once a heterologous boost is administered (34, 35). The responses to the heterologous boost may be amplified compared with giving a homologous regimen of the booster vaccine (36-39). The DNA prime can also modulate the type of immune response observed following the heterologous boost, in comparison with the booster vaccine alone (32, 35, 39). In other cases, robust responses to the DNA vaccine alone can be observed (40). Clearly, the nature of the immune response depends on the immunogen expressed and immunomodulatory elements in the design or formulation of the DNA vaccine, as well as the method of delivery (41). Evaluation of the contribution of the DNA vaccine to the immunogenicity of any given vaccination regimen may be best assessed by the ultimate immune responses of the regimen as a whole in comparison with a regimen not including DNA vaccination. This is not to suggest that immune responses to the plasmid DNA prime should not also be evaluated, but rather that the priming response may be best assessed in the context of the boosted response.

DNA vaccines have progressed as far as Phase IIb pilot efficacy trials. It is anticipated that some candidate vaccines will proceed to Phase III clinical testing. The strong immune responses observed in animal models have generally not been reproduced in humans, with a few exceptions, including a DNA vaccine for WNV that generated neutralizing antibody in humans at titres that are known to be protective in horses, and good titres were also produced in elderly humans, who generally have suboptimal immune responses to vaccines; a WNV DNA vaccine was licensed for horses in 2005 (42-44). Likewise, immune responses were observed in clinical trials of DNA vaccines for Ebola/Marburg, although a different gene-based vector was advanced that required only a single vaccination vs. 3 administrations needed for the DNA vaccines (45-47).

Many approaches have been tested and are being evaluated to enhance the immune response in humans. These approaches have different intended mechanisms of increasing
immunogenicity and improving efficacy, such as by enhancing cellular uptake, strengthening expression, modulating the immune response towards a more favourable profile, or optimizing adjuvant effects. Several examples are provided below:

Optimization of the vector itself:

- optimizing codon usage of the gene encoding the antigen of interest (to increase expression);
- optimizing the expressed ribonucleic acid (RNA) for translation, such as eliminating cryptic splice sites or polyadenylation sites, changing the sequence to avoid secondary structures or runs of high GC or AT base pairs;
- using stronger promoters/enhancers;
- incorporating signal sequences on protein antigens to facilitate presentation;
- encoding a variety of T-cell epitopes either instead of or in addition to a full-length protein antigen (to modulate the immune response by targeting T cell stimulation)

Optimization of the formulation/delivery:

- complexing the DNA with polymers (to enhance uptake, to improve stability after administration and uptake);
- encapsulating the DNA on or within microparticles (to assist uptake, presentation and stability after administration and uptake);
- optimizing administration, e.g. by particle-mediated delivery (gene gun), CO2 or air injector (jet injector), or electroporation (to enhance uptake);
- changing the route of administration, e.g. mucosal versus parenteral (to modulate the immune response);
- boosting with viral vectors or protein antigen following an initial priming with plasmid DNA (to boost and/or modulate immune responses); and
- co-administrating DNA encoding an immune stimulatory molecule (molecular adjuvant), e.g. a cytokine (to enhance immune response, to modulate the immune response).

Other approaches may be under development now or developed in the future. The above approaches to enhancing the efficacy of a DNA vaccine may raise specific safety concerns and these should be addressed in appropriate nonclinical and clinical safety studies. To date, published data from clinical trials indicate that DNA vaccines are safe, with acceptable reactogenicity profiles (11, 22, 29, 45, 48-50). Whether approaches that result in enhanced expression will increase reactogenicity remains an open question.

DNA vaccines have been developed for veterinary use, and efficacy in animal target species has been observed in some trials. Potentially protective immune responses have been observed against many infectious agents in several target species including fish, companion animals, and farm animals. Although the quality and safety considerations for veterinary vaccines may differ from those for human use, experience with veterinary DNA vaccines can provide valuable information for the control and use of human DNA vaccines. A DNA
vaccine against WNV, which generates protective antibody responses, for use in horses was licensed in the USA in 2005. A DNA vaccine against infectious hematopoietic necrosis virus (IHNV), which affects both trout and salmon, was licensed in 2005 in Canada for use in salmon, and more recently a DNA vaccine against pancreas disease for use in salmon was licensed in 2016 in several countries and currently is in use in farmed salmon (51). This vaccine was evaluated for integration or long-term persistence in salmon, and the risk was found to be “orders of magnitude lower than the upper estimated integration rate calculated in the context of the worst-case scenarios” (52, 53).

The revised guidelines in this document focus on the quality control of vaccines based on biologically manufactured bacterial plasmid DNA intended for use in humans. Nonclinical and clinical aspects are also briefly described, in that general principles that apply to other vaccines also apply to DNA vaccines, so only notable differences or additions are discussed.

The purpose of this document is to provide guidance on:

- appropriate methods for the control of the manufacture and characterization of plasmid DNA vaccines;
- appropriate approaches for the nonclinical and clinical testing of plasmid DNA vaccines; and
- information specific to plasmid DNA vaccines that may be expected to be included in submissions by manufacturers to national regulatory authorities (NRAs) in support of applications for the authorization of clinical trials and for marketing/licensure.

The main changes compared with the Guidelines published in WHO Technical Report Series, No. 941, Annex 1 (19), include the following:

- Updating the introduction with additional data including citations for nonclinical and clinical data that collectively address many historical safety concerns;
- Revising the scope to preventive DNA vaccines against infectious diseases;
- Updating the quality section (Part A) to be more consistent with current practices and existing WHO guidelines;
- Extensively revising the nonclinical section (Part B) to reference more general WHO guidelines that have been adopted since the prior version and to focus on a few specific issues;
- Adding a clinical section (Part C) that also references a recently revised general WHO guideline and to focus on a few specific issues;
- Adding a Part D for specific guidance to NRAs; and
- Adding sections on the model summary protocol for the manufacturing and control of plasmid DNA vaccines (Appendix 1) and the model NRA lot release certificate for plasmid DNA vaccines (Appendix 2).

Purpose and scope
This document provides guidance on quality, nonclinical, and clinical aspects of DNA vaccines (including plasmids encoding adjuvant molecules, if present) intended for use in humans to prevent infectious diseases. Plasmid DNA vaccines intended for veterinary use fall outside the scope of these guidelines.

The active constituent of a DNA vaccine is a DNA plasmid(s) into which gene(s) encoding the desired immunogen(s) is (are) inserted and prepared in purified plasmid preparations to be administered in vivo. Typically, these plasmids possess DNA sequences necessary for selection and replication in bacteria. In addition, they contain eukaryotic promoters and enhancers as well as transcription termination/polyadenylation sequences to promote gene expression in vaccine recipients and may contain immunomodulatory elements. In these guidelines, vaccines are defined as biological medicines for the prevention of infectious diseases.

Although plasmid DNA products developed for therapeutic use against diseases such as cancer (where plasmids may encode a viral or tumour antigen, as well as immunomodulatory proteins), autoimmune, or allergic diseases are not in the scope of these guidelines, manufacture and quality control of plasmid DNA for these indications may be essentially identical. Consequently, the quality section of these guidelines may be applicable to DNA plasmids for therapeutic as well as preventive use. Likewise, use of plasmid DNA to express monoclonal antibodies for preventive, post-exposure prophylaxis, or therapeutic purposes are outside the scope of this guideline, but the quality section (Part A) may be applicable. The detailed design of relevant nonclinical and clinical testing should consider the proposed use of the DNA plasmid(s) and the risk–benefit situation. Plasmid DNA for use in gene therapy, plasmid DNA derived in eukaryotic cells, viral replicons, bacterial cells acting as a carrier for a plasmid DNA encoding a relevant antigen, and nucleic acid vaccines made entirely by chemical means are all outside the scope of these guidelines.

The revised guidelines are unlikely to be applicable to vaccines based on RNA vaccines because different requirements are likely to apply for quality, nonclinical, and clinical testing for these types of vaccines and immunotherapeutics.

In general, recommendations in these guidelines are relevant to the DNA vaccine at the time of application for marketing authorization. Nevertheless, some relevant information is provided in these guidelines with respect to candidate vaccine products in development; otherwise, the respective NRA should be consulted prior to clinical development on a case-by-case basis (54-56).

Acknowledgement is made that products that blur the lines between viral vectors, cell therapy, and nucleic-acid vaccines are likely to emerge, e.g. RNA replicons. Other developments that complicate the regulatory evaluation of nucleic-acid vaccines are also foreseen; e.g. self-amplifying molecules. However, at the present time, these remain outside the scope of these guidelines.
Terminology

The definitions given below apply to the terms as used in these WHO Guidelines. These terms may have different meaning in other contexts.

Adjuvants: substances that are intended to enhance relevant immune response and subsequent clinical efficacy of the vaccine (55).

Benefit–risk assessment: a decision-making process for evaluating whether or not the benefits of a given medicinal product outweigh the risks. Benefits and risks need to be identified from all parts of a dossier – that is, the quality, nonclinical and clinical data – and integrated into the overall assessment.

Bulk purified plasmid (bulk): the purified plasmid before final formulation. It is obtained from one or more harvests, is kept in one or more containers designated as a single homogeneous production batch and is used in the preparation of the final dosage form (final formulated vaccine).

Candidate vaccine: candidate vaccine is a vaccine that is regarded in national regulations as separate and distinct from other candidate and licensed vaccines (56).

Cell bank: a collection of vials of cells of uniform composition derived from a single bacterial cell transformed by the plasmid encoding the desired immunogen and used for the production of a vaccine directly or via a cell-bank system. The following terms are used in these Guidelines: master cell bank (MCB), which is a bank of a cell substrate from which all subsequent cell banks used for vaccine production will be derived; the MCB represents a well characterized collection of cells derived from a single cell. And working cell bank (WCB), which is a cell bank derived by propagation of cells from an MCB under defined conditions and used to initiate production of cell cultures on a lot-by-lot basis; a WCB is also referred to “as manufacturer’s working cell bank” in other documents.

DNA vaccine (or plasmid DNA vaccine): a DNA plasmid(s) into which the gene for the desired immunogen(s) is (are) inserted and prepared as purified plasmid preparations to be administered in vivo. Typically, these plasmids possess DNA sequences necessary for selection and replication in bacteria. They contain eukaryotic promoters and enhancers as well as transcription termination/polyadenylation sequences to effect gene expression in vaccine recipients. In addition, they may contain or encode immunomodulatory elements.

Final lot: a collection of sealed final containers that is homogeneous with respect to the composition of the product and the avoidance of contamination during filling. A final lot must therefore have been filled from a formulated bulk in one continuous working session.
Final product: a finished dosage form (for example, suspension or lyophilized cake) that contains an active ingredient, generally but not necessarily in association with inactive ingredients (excipients) or adjuvants. Also referred to as “finished product” or “drug product” in other documents.

Formulated bulk: an intermediate in the drug product manufacturing process, consisting of the final formulation of antigens, adjuvants and excipients at the concentration to be filled into primary containers.

Good manufacturing practice (GMP): a system that ensures that products are consistently produced and controlled to the quality standards appropriate to their intended use and as required by the marketing authorization.

Heterologous prime-boost: DNA vaccines are often given with another vaccine, such as a viral-vectored vaccine or a protein subunit vaccine, in a combination regimen consisting of heterologous prime-boost. In other words, one vaccine is given in a priming dose series and a different vaccine (or a combination of the two) is administered as a booster.

Immunogenicity: the capacity of a vaccine to elicit a measurable immune response.

Marketing authorization: a formal authorization for a medicine (including vaccines) to be marketed. Once an NRA approves a marketing authorization application for a new medicine, the medicine may be marketed and may be available for physicians to prescribe and/or for public health use (also referred to as product licensing, product authorization, or product registration).

Plasmid: a circular, extrachromosomal bacterial DNA element that undergoes autonomous replication in bacterial cells. It usually carries a few genes, some of which confer resistance to various antibiotics or other selection markers; such resistance or selection marker is used to discriminate between organisms that contain the plasmid and those that do not.

General considerations

The guidelines cover DNA vaccines noting that the method or specific device to deliver the vaccine (e.g. injector, electroporator) may be integral to achieving efficacy. In the case of requiring a specific device, other delivery methods may not be interchanged, unless justified (57, 58). Product labelling information for the vaccine will need to take this into account.

Regulatory pathways for licensure of vaccine in context of delivery device may vary by regulatory jurisdiction, and early discussions with NRA(s) are advised. If the plasmid DNA vaccine is to be marketed along with a novel device (e.g. combination products or Combi-kit), the NRA shall decide the regulatory requirements for seeking approval marketing authorization best suited for the needs of their country. In some jurisdictions, the vaccine and device taken together may be considered to be a combination product, with a defined
regulatory pathway for marketing authorization. Whatever the regulatory approach in the
jurisdiction in which marketing authorization is being sought, it is important to recognize that
the marketing authorization should reflect the device (and device parameters) used to deliver
the candidate vaccine during the pivotal efficacy trial(s) and for which there is a sufficiently
large safety database. Further, if there is more than one vaccine in the regimen and they are
produced by different manufacturers, it will be important to consult with the NRA(s) for
guidance on how best to proceed for licensure or marketing authorization.

Formulation may be crucial to the safety and effectiveness of any vaccine, but for DNA
vaccines, when a transfectant, facilitator, adjuvant, or plasmid-encoded adjuvant (e.g.
cytokine gene) is included in the formulation, special attention should be given to the
formulation that is demonstrated to be safe and efficacious in the pivotal efficacy and/or large
safety trials.

The current generation of DNA vaccines made from bacteria are produced biologically and
are considered to be a biological product. While the plasmid is generated by recombinant
DNA technology, it should be clarified that a plasmid DNA vaccine is not an organism; thus,
it is not a genetically modified organism (GMO) per se, nor is it a gene-transfer or gene-
therapy product. There is a wealth of evidence that DNA vaccines to date do not persist or
even biodistribute throughout the body of the vaccinee when delivered parenterally into
muscle, subcutaneous tissue, or various dermal layers (59-67). What predominantly
biodistributes is the immune response generated, following uptake of the plasmid DNA and
in situ expression of the immunogen(s), along with cross-priming from myocytes to
professional antigen-presenting cells (68,69). The local response to plasmid DNA inoculation
is that cells either take up the plasmid and then express the immunogen(s) encoded in the
DNA vaccine and/or the nucleic acid is degraded by normal molecular mechanisms. As a
consequence, the plasmid DNA clears from the injection site over time. It is the immune
response that may persist.

The quality section of these guidelines addresses the control of the bulk purified plasmid,
including control of the manufacturing process and the starting materials, characterization
and control of the purified plasmid, control of the final formulated vaccine including
formulation, control of materials used in formulation, and stability of the bulk purified
plasmid and the final formulated vaccine. The appropriate use of reference materials and
international standards is also described. Whenever changes to the manufacturing process are
implemented, comparability of lots, especially with those used in pivotal studies and the
commercial process, should be demonstrated.

The nonclinical and clinical sections of these guidelines reference existing general WHO
guidelines (54-56) and also address some issues that may apply to DNA vaccines more than
to other types of vaccines. This revision includes a clinical section for the first time. The
nonclinical section has been made more succinct in light of additional data on the concerns
that were initially raised before there was such extensive nonclinical and clinical experience
with DNA vaccines. The existing nonclinical and clinical databases taken as a whole support the conclusion that prior concerns about integration, autoimmunity, and immunopathology have not been observed (59-67). To date, based on clinical experiences, the reactogenicity observed relate more to the delivery method than to the DNA vaccine itself, notably with electroporation or with particle-mediated bombardment (1, 4, 21, 25-31, 70-72).

The control, nonclinical testing, and clinical development of each vaccine should be considered individually, and any special features of that candidate vaccine should be taken into account. Consultation with the NRA(s) is useful to assure efficient development of any given candidate vaccine.

Part A. Guidelines on manufacturing and control of plasmid DNA vaccines

A.1 Definitions
A.1.1 International name and proper name
The international name should be “plasmid DNA vaccine”. The proper name should be the equivalent to the international name in the language of the country of origin. The use of the international name should be limited to vaccines that meet the specifications elaborated below. Defined recombinant nucleic acids used as active substances in vaccines, whether of biological or synthetic origin, could be assigned an International Nonproprietary Name (INN) upon request (73, 74).

A.1.2 Descriptive definition
The DNA vaccine is a sterile liquid or lyophilized vaccine preparation that contains x μg of each of one or more plasmid DNAs; the amount of each plasmid may vary from another plasmid in the formulation based on relative expression or immunogenicity. The DNA vaccine may be formulated with a suitable adjuvant or other excipients that might enhance uptake of the plasmid DNA(s) in the vaccinee. Such vaccines are for preventive/prophylactic use in humans.

A.2 General manufacturing guidelines
Plasmid DNA vaccines are considered to be similar to bacterial and viral vaccines produced by traditional methods, where adequate control of the starting materials and manufacturing process is as important as that of the final product. The guidelines therefore place considerable emphasis on the control strategy of the manufacturing process of the vaccine as well as on comprehensive characterization and batch and lot release of the bulk and the vaccine itself.

The general manufacturing requirements contained in good manufacturing practices (GMP) for pharmaceutical products: main principles (75) and biological products (76) should apply to the design, establishment, operation, control and maintenance of manufacturing facilities for DNA vaccines. The requirements should also apply to the vaccine filled in the final form, records, retained samples for future studies and needs, labelling, distribution and transport, as
well as storage and expiry date for DNA vaccines (75, 76). Quality control during the manufacturing process relies on the implementation of quality systems, such as GMP, to ensure the production of consistent commercial vaccine lots with product characteristics similar to those of lots shown to be safe and effective in clinical trials. Throughout the process, a number of in-process control tests should be established (with acceptable limits) to allow quality to be monitored for each lot from the beginning to the end of production. It is important to note that while most release specifications are product-specific, DNA vaccines, as a product class with shared characteristics, tend to meet product class-specific specifications for many release parameters. Whatever the case, these should be agreed with the NRA(s) as part of the clinical trial or marketing authorization.

DNA vaccines for use in clinical trials should also be prepared under GMP conditions suitable for the stage of clinical development (i.e. full compliance may not be possible in initial or early development when manufacturing and control procedures remain in development and may not be validated yet; however, it would be expected that validated procedures would be used in early development if they are procedures shared with other DNA vaccines made in that facility that have attained higher phases of development in which the procedures have been already validated). Appropriate attention needs to be given to the quality of all reagents used in production, including the components of fermentation medium. Particular attention to the sourcing of components of animal or human derivation is required. Many of the general requirements for the quality control of biological products, such as tests for endotoxin, stability and sterility, also apply to DNA vaccines.

Particular attention should be given to DNA vaccines prepared in multi-use facilities, as would be typical in initial or early clinical development. Cleaning validation would be expected even in early development for such multi-use facilities, even though such validation would normally occur later (though prior to commercial production) in a dedicated facility. One novel aspect particular to DNA vaccines is that cleaning procedures need to be verified with an assay sensitive enough to detect not only microorganisms and other biological materials that may be residual from prior manufacture, but also residual full-length plasmid DNA from prior lots of products made using the same equipment and facility. This issue of carry-over or potential for cross-contamination is a specific concern because of the amounts (often, mg quantities) at which DNA vaccines are administered, which may vary from other products made using the same equipment or in the same facility due to formulation and delivery method. Manufacturers also should define the methods they carry out to prevent cross-contamination.

It is recognized that the level of detail required by a regulatory authority increases as product development proceeds. During the initial phases of clinical development, the information contained in a clinical trial application should be adequate to allow an assessment of the safety risks derived from the manufacturing process. This would include, for example, testing of the cell banks for identity, identification and specifications for all materials used in the process, assessment of risks from biologically-sourced materials, certification or phase-
appropriate GMP compliance of the manufacturing facility, a brief description of the process and tests, results of testing of the clinical trial material and preliminary stability of the final product. As with all vaccines, for late-stage clinical trials, the level of detail on the Quality (manufacturing and controls) expected would increase.

Changes made to the product composition (e.g. addition of adjuvant or preservatives) or manufacture (process, site or scale) during the development of clinical lots should be adequately described. Depending on how the final product composition is changed, e.g. addition of novel excipients, new preclinical studies might be warranted. For changes to the manufacturing process such as scale-up or change to the purification process, comparability of the clinical trial material with the one from previous processes should be evaluated. The comparability studies might include immunogenicity data from animal models, results from physico-chemical analyses, process and product-related impurity studies, and stability data (77).

A.3 Manufacture and control of bulk purified plasmid (bulk)
A.3.1 General information and description of manufacturing process and process controls
A brief overview of the development and manufacture of the plasmid(s) should include a justification for the selection of the gene(s) of interest, other gene(s) encoded in the plasmid (e.g. selection markers or antibiotic resistance gene), and regulatory elements used. Any gene expression optimization modifications should be described. The sequence of the complete plasmid should be provided.

A.3.2 Manufacture
A.3.2.1 Control of materials
The materials used in the manufacture of the bulk plasmid DNA (e.g. raw materials, biological starting materials, column resins, solvents, reagents and catalysts) should be listed and information given on where each material is used in the process. Information on the quality and control of these materials should be provided.

Reference to internationally accepted pharmacopoeias or details on the specifications should be provided.

A.3.2.1.1 Control of source and starting materials of biological or animal origin
Information regarding the source, manufacture and characterization of all biologically-sourced materials or materials that may have used biological materials during manufacture should be provided. Risk assessment for bovine spongiform encephalopathy agents should be provided if bovine materials were used at any stage.

A.3.2.1.2 Source, history and generation of the host cell and plasmid
Information should be provided on the bacterial host cell including its source, phenotype and genotype. Particular attention should be given when using a host cell that is a novel strain or species of bacterium, including to the types of toxins they may express.

The complete nucleotide sequence of the plasmid DNA vaccine should be provided together with appropriate annotation indicating the important elements, such as the promoters/enhancers, termination sequences, drug-resistance or other marker for selection in bacteria, and bacterial origin of replication. In most cases, it is likely that the gene for the immunogen will be optimized for expression and synthesized chemically before being recombined into the plasmid DNA. As such, the gene will have a novel sequence and not be present in any database. In contrast, if the gene is obtained from other sources such as amplification from a natural element by PCR, the source of that material should be provided.

As part of characterization, a DNA sequence homology check of the plasmid with the international databases (e.g. the National Center for Biotechnology Information, National Institutes of Health, USA, and/or other international nucleotide databases) should be performed to investigate the presence of unintended sequences of biological significance, such as those encoding cellular growth factors, other known immunogens, or viral sequences.

The identity of the plasmid after transformation into the bacterial cell to be used for production should be confirmed. While sequencing is preferred, representative restriction enzyme maps may also be useful. The candidate vaccine selected to advance in clinical development and for marketing authorization should be demonstrated to be genetically stable.

A.3.2.1.3 Cell banking system, characterization and testing

The production of a plasmid DNA vaccine should be based ideally on a cell bank system involving an MCB and a WCB.

For early stage clinical trials, it may be appropriate to use the MCB to initiate production, although manufacturers are expected to prepare a WCB for later clinical studies. Ideally, initiating production from a well-characterized WCB is expected for commercial manufacturing.

A well-characterized bacterial cell containing the plasmid should be cloned and used to establish the MCB. The preparation of the MCB and WCB should be conducted according to GMP with appropriate precautions taken to prevent contamination. Information should be provided on the origin, form and storage conditions. Evidence for the viability of the MCB and WCB under storage and recovery conditions should also be provided by the time of application for marketing authorization. New WCBs should be fully characterized and meet established acceptance criteria. Specific phenotypic features that can form a basis for identification of the transformed cell should be described. Prior to their use, either a protocol for establishing and releasing new WCBs or information on each new WCB should be provided for regulatory review and concurrence.
The DNA sequence of the entire plasmid should be confirmed at the stage of the MCB and/or WCB.

The genetic stability of the plasmid should be confirmed by characterizing the size and complete sequence.

A.3.2.2 Process development and in-process control

The developmental history of the manufacturing process should be provided. Tests and acceptance criteria for critical steps of the manufacturing process should be developed to ensure, and provide feedback on, the control of the process.

Validation of the manufacturing process should demonstrate reproducible and consistent clearance of process and product-related contaminants to levels acceptable for the intended use in humans.

Process validation is not generally required for a product used in early-stage clinical trials although critical steps such as aseptic processing, sterility of final product and cleaning validation - particularly when multi-product facilities or contract manufacturing organizations are used for the manufacturing - should be validated or carefully and convincingly controlled prior to initiation of clinical development.

A.3.3 Characterization

A.3.3.1 Characterization of bulk purified plasmid

A summary of the characterization of the bulk purified plasmid(s) should be provided in addition to in-process and lot-release testing. Rigorous characterization by chemical, physical and biological methods will be essential paying particular attention to the use of a range of analytical techniques based on different principles.

During development, the sequence of the entire plasmid should be determined, as discussed in sections A.2, A.3.2.1.2, and A.3.2.1.3 above.

The immunogenicity elicited by the DNA vaccine should be characterized. Whenever other immunomodulatory elements or genes are included, their contribution to the mode-of-action (immunogenicity) of the DNA vaccine should also be determined in order to justify their inclusion.

Potential impurities in the purified product should be described and investigated. These impurities include residual host cell proteins, endotoxins, residual host cell RNA and chromosomal DNA, materials used in the manufacturing process and medium components. Data should be provided on the contaminants present in the purified plasmid, with estimates of their maximum acceptable or lowest achievable levels. For contaminants and residuals with known or potential toxic effects, a toxicological risk assessment is expected. Degraded
plasmid DNA may be assessed as part of analytical procedures such as polyacrylamide gel electrophoresis, high performance liquid chromatography and/or capillary electrophoresis. An important characteristic of the purified bulk plasmid to determine is the degree to which the plasmid remains supercoiled or has been partially converted to relaxed circles or linear forms.

A.3.3.2 Consistency of manufacturing
Prior to seeking marketing authorization, a number of consecutive batches should be characterized and analysed by employing validated methods to determine consistency of manufacture. Any differences between one batch and another outside the accepted range for the parameters tested should be noted. The data obtained from such studies, as well as clinical-trial outcomes with various lots, should be used as the basis for justification of the chosen specifications.

During early-stage development, few lots will have been made, and demonstration of consistency may be limited. Demonstration of consistency will occur as manufacturing experience is gained during product development. Characterization of consistency of lots is generally done either during advanced development, when the manufacturing process has been scaled up for commercial manufacture but prior to submission of a licence or marketing application. Whenever changes to the manufacturing process are implemented, comparability of lots, especially to those used in pivotal studies and the intended commercial process, should be demonstrated. Comparability protocols and strategies for demonstrating comparability are discussed in the WHO Guidelines on procedures and data requirements for changes to approved vaccines (77).

A.3.4 Control of bulk purified plasmid
Specifications for critical quality attributes for the identity, purity, quality, and safety of the bulk purified plasmid should be established and justified. Descriptions of analytical methods used and acceptance limits defined, including assay validation information, should be provided. A summary of the results of testing of all batches produced at commercial scale should be provided.

Early in development, results from testing batches made in accordance with GMP and, if available, engineering runs performed to establish manufacturing procedures should be summarized and provided.

It is recommended that the specifications for the bulk purified plasmid include, at a minimum, an assessment of the identity, purity, physical state and quantity of the plasmid, endotoxin content and sterility or bioburden. A justification of the specifications should be provided.

Early in development, the specifications may be limited and have somewhat wide acceptance criteria. Not all the tests conducted during product characterization need to be carried out on each batch of vaccine. Some tests are required only to establish the validity or acceptability of
a procedure, whereas others might be performed on a limited series of batches to establish consistency of production. Thus, a comprehensive analysis of the initial commercial production batches should be undertaken to establish consistency with regard to identity, purity, quality, safety, and stability; thereafter, a limited series of tests may be appropriate.

A.3.4.1 Identity
The identity of each batch should be confirmed by an appropriate means; such as PCR analysis, sequencing, restriction enzyme analysis, in vitro expression (mRNA or protein) of the gene insert of the plasmid accompanied by confirmation of the identity of the expressed antigen.

A.3.4.2 Purity
Limits based on process capability and regulatory guidance should be established for all impurities detected, and these should be identified and characterized as appropriate. The degree of contamination with chromosomal DNA, RNA and proteins should be evaluated and limits established, and the acceptance criteria should be established and specified. Comparison of the absorbance at 260 nm and 280 nm may be useful for purity assessment, such as the extent of contamination introduced by RNA and cellular proteins. Residual levels of medium components (including antibiotics, if applicable) and other materials from process steps should also be controlled. The analysis should include sensitive and reliable assays for process- and product-related contaminants and strict upper limits should be specified for their content in the bulk purified plasmid. A maximum allowable limit should be established and justified. It is important that the techniques used to demonstrate purity be based on as wide a range of physicochemical properties as possible. Measuring residual levels of process- or product-related impurities as part of quality control may be discontinued after processes have been adequately validated for their suitable removal. Container-closure system compatibility, leachables and extractables should be assessed and discussed in the application.

Where multiproduct facilities or contract manufacturing organizations are used for the manufacturing process, freedom from contamination with other products, especially other DNA plasmids made in the same facility, should be demonstrated to be below defined limits.

A.3.4.3 Physical state, quantification of plasmid
The proportion of supercoiled plasmid should be determined and specifications set. Quantification of the plasmid amount is usually by absorbance at 260 nm. Any additional quality parameters relevant to the bulk purified plasmid should also be determined and specifications set, e.g. pH or viscosity might be important for certain products, to ensure stability and quality at the bulk purified plasmid stage.

A.3.4.4 Safety
Relevant safety tests should be described. These may include: tests for endotoxins and/or pyrogens, a test for bacterial and fungal sterility including demonstration of lack of
bactericidal or fungicidal activity of the test article or a test for bioburden including quantity,
identification, and freedom from objectionable organisms.

A.3.5 Reference materials
An in-house reference preparation should be established for use in assay standardization.
Information on the reference standards or reference materials used for testing of the bulk
purified plasmid should be provided by the time of application for marketing authorization.
A suitable batch, i.e. one that has been clinically evaluated, should be fully characterized in
terms of its chemical composition, purity and biological activity, complete sequence, and
retained for use as a chemical and biological reference material. A plan for replacing the
initial reference material upon exhaustion should be agreed with the NRA(s).

In early development, use of an engineering run batch or a batch used to produce the lot of
DNA vaccine used in the pivotal nonclinical studies may be used until a suitable clinical trial
lot has been identified and characterized for use in advanced development and commercial
manufacture.

A.3.6 Stability
The stability assessment should be in compliance with the WHO Guidelines for Stability
Evaluation of Vaccines (78). The types of studies conducted, the protocols used, and the
results of the studies should be summarized in an appropriate format such as tables, graphs or
a narrative document. The summary should include results as well as conclusions with
respect to appropriate storage conditions or shelf-life. Data on stability to support the shelf-
life of the bulk and any future extension of it should be based on long-term, real-time stability
studies under actual conditions.

Limited stability information would be expected during initial clinical development. For
example, some regulators accept three months of real-time stability at the time of application
for clinical trial authorization, but this should be agreed with the NRA. Lots should be
labelled with a re-test or re-pass date, if required by the NRA.

A.4 Manufacture and control of final formulated vaccine (vaccine)
A.4.1 Composition
The final composition of the vaccine should be described. If it is required for established
safety and efficacy that the vaccine be delivered by a specific method or device, this should
also be described.

A.4.2 Manufacture
A flow chart should be provided that illustrates the manufacturing steps from the bulk
purified plasmid to the final formulated vaccine. The chart should include all steps (i.e. unit
operations), identification of materials and in-process and quality control tests. In some cases,
this may involve simple dilution of the purified bulk; in other cases, a more complex
formulation may be envisaged including combining purified bulks of more than one plasmid.
A narrative description of each process step depicted in the flow chart should be provided. Information should be included on, for example, scale, buffers and other additives, major equipment, and process controls, including in-process tests and critical process operational parameters with acceptance criteria.

A.4.3 Control of materials
Details of excipients, including adjuvants, or any other component of the container-closure system of the vaccine in addition to the plasmid constituting the immunogen should be provided, including their source, specification, method of conjugation, if appropriate, and final concentration in the vaccine.

A.4.4 Control of final formulated vaccine
Specifications for the vaccine should be established and justified. Descriptions of analytical methods and acceptance limits for the vaccine, including information on assay validation should be provided. It is recommended that the specifications include an assessment of the identity, purity, physical state and quantity of the plasmid, any other relevant quality parameters, potency, endotoxin content and sterility. A justification of the specifications should be provided.

Early in development, the specifications may be limited with wide acceptance criteria. A summary of the results of the testing on all lots produced at commercial scale should be provided. Early in development, results from testing lots made in accordance with GMP, and if available, engineering runs performed to establish manufacturing procedures should be summarized and provided.

The appropriateness of performing tests on the bulk purified plasmid versus the formulated vaccine should be considered on a case-by-case basis and justified.

When more than one plasmid is contained in the final formulation, it may not be readily achieved to distinguish the potency of one plasmid from another. In such cases, assessing in vitro expression on each bulk purified plasmid may be performed to establish the potency of the final formulation. In other words, the potency of the final product may be inferred and calculated from the potency of each of the plasmids contained, if the potency of each plasmid cannot be distinguished from another in the final product. However, if there is an adjuvant or facilitator in the final formulation that may alter the potency of the individual plasmids; this approach may not be reliable.

Several consecutive lots of vaccine, in final dosage form, should be characterized and analysed by employing validated methods to determine manufacturing consistency. Any differences between one lot and another should be noted. The data obtained from such studies, as well as clinical trial outcomes with various lots, should be used as the basis for defining the vaccine specifications and acceptance criteria to be used for routine lot release.
Not all the tests conducted during product development need to be carried out on every lot of vaccine produced at commercial scale. Some tests are required only to establish the validity or acceptability of a procedure, whereas others might be performed on a limited series of lots to establish consistency of production. Thus, a comprehensive analysis of the initial commercial production lots should be undertaken to establish consistency with regard to identity, purity, quality, potency, strength/content/quantity, safety, and stability but thereafter a more limited series of tests may be appropriate.

A.4.4.1 Identity
Each lot of vaccine should be subjected to an appropriate selection of the tests used to confirm the identity of the final product plasmid. Depending on the scope of identification tests, confirmation of the identity by restriction enzyme mapping, sequencing, and/or PCR, should be considered.

A.4.4.2 Purity
The purity of each lot of vaccine should be determined and be shown to be within specified limits. The form of the final product plasmid(s) should be confirmed; e.g., gel electrophoresis or other method to demonstrate that the vaccine has not degraded should be conducted. Container-closure system compatibility, leachables and extractables should be assessed and discussed.

Where multiproduct facilities or contract manufacturing organizations are used for the manufacturing process, freedom from contamination with other products should be demonstrated to established limits or below detection.

A.4.4.3 Content, Strength, or Quantity
DNA vaccines are dosed based on quantity of the plasmid by weight. Generally, this is established by absorbance at 260 nm (comparison of absorbance at 260 nm and 280 nm may be useful in assessing purity).

A.4.4.4 Other quality parameters
Quality parameters should be established and controlled. Important quality parameters include appearance and pH. Another important quality parameter is the percentage of supercoiled plasmid to overall amount of plasmid (which may be present in other forms such as nicked circles or linear). Depending on the product characteristics, control of other parameters such as osmolality or viscosity may be important. Further, quality may be assessed by methods used to evaluate purity or identity, such as restriction mapping, gel or capillary electrophoresis, and/or high-performance liquid chromatography (HPLC) though these may best be performed on the purified bulk plasmid instead. Other tests, such as the test for residual moisture if the vaccine is lyophilized, may be required to confirm the physical characteristics of the product as well as the formulation.

A.4.4.5 Potency
The potency of each lot of the vaccine should be determined using a suitably quantitative and validated assay. It is preferable that potency relative to an appropriate in-house reference preparation be established. It is preferable that a potency assay be established that can be correlated to functional activity. Often, this takes the form of a quantitative \textit{in vitro} expression system. The immunogen might be expressed \textit{in vitro} by transfection of a suitable cell line and either the expressed mRNA or the expressed protein identified, for example, by quantitative RT-PCR (in the case of mRNA) or by immunofluorescence or Western blot (in the case of protein). It may be appropriate to establish potency on the basis of an alternative suitably justified laboratory method (i.e. a non-bioassay). Early discussion with the NRA(s) to gain consensus regarding appropriateness of a proposed method should be undertaken.

When multiple plasmids are included in the final formulation, the potency of each immunogen encoded should be assessed. However, if this cannot be determined at the stage of the final formulation, it may be necessary to assess potency at the stage of the individual plasmid prior to inclusion in the final formulation (see discussion in Sections A.4.4 and A.4.4.7).

When a cell-based potency assay is used, it is important to control the cells used by banking to ensure a consistent supply of cells for testing. Furthermore, the cells should be assessed for freedom from adventitious agents, mycoplasma/spiroplasma (the latter, if relevant), bacteria/fungi, and mycobacteria (if relevant) and only suitably controlled cells used.

\textbf{A.4.4.6 Safety, including sterility and endotoxin testing}

Each lot of vaccine should be tested for sterility. If the vaccine is to be administered by a non-parenteral route, omission of the sterility test and inclusion of an appropriate alternative bioburden test needs to be appropriately justified. Further, a test for endotoxin should be conducted on each lot, and appropriate specifications should be defined. This may be determined by use of the monocyte activation test. If required by an NRA, a test for pyrogenicity may be performed; however, animal testing should be avoided whenever alternative satisfactory testing is allowed. For ethical reasons, it is desirable to apply the 3Rs concept of “Replace Reduce Refine” to minimize the use of animals in research, and consideration should be given to the use of appropriate \textit{in vitro} alternative methods for safety evaluation. Particularly, the test known as the innocuity, abnormal toxicity, or general safety test should not be required nor requested.

\textbf{A.4.4.7 Multi-component vaccines}

Additional factors must be considered when more than one plasmid forms the final formulated vaccine. Plasmids in multi-component vaccines may encode additional antigens or cytokines or other biologically active molecules that enhance the efficacy or affect the safety of the vaccine. For each plasmid, the development overview, the control of production and the characterization of the bulk purified plasmid must be described as above. Likewise, for multi-component DNA vaccines that contain components (e.g. immunomodulatory molecules or cytokine proteins) in addition to the plasmid(s), the role of the additional
components should be addressed. Careful consideration has to be given to the control of the
dfinal formulated vaccine. For example, potency may depend on the combination of plasmids
and their interaction and not on any single plasmid component of a multicomponent vaccine.

On the other hand, it may not be feasible to measure potency in the context of a mixture of
closely related antigens and potency of the individual plasmids may have to be measured as
expression in the individual purified bulk plasmids. Clarity on the approach taken and its
justification should be described.

A.4.5 Reference materials
A suitable lot of the final formulated vaccine, or batch of bulk purified plasmid, that has been
clinically evaluated, should be fully characterized in terms of its chemical composition, purity
and biological activity, including full sequencing, and retained for use as a chemical and
biological reference material. This material should be used as the basis for evaluation of
product quality for commercial production lots.

In future, international standards (IS), expressed in International Units (IU), may be prepared
by a WHO collaborating centre. When such IS become available, it will be important to
compare the internal reference material with the IS, so that IU may be assigned and in order
to fully validate quality control tests or assays. In this manner, comparisons can be made in a
more reliable and less variable way whenever new reference materials are needed to be
prepared.

Likewise, IS may be useful for interpretation of nonclinical and clinical assays of immune
responses or other biomarkers of relevance to the DNA vaccine under development or being
evaluated for marketing authorization (also see the WHO guidelines listed in Parts B and C
for further guidance on this issue).

A.5 Records
The recommendations given in the WHO Good manufacturing practices for pharmaceutical
products: main principles (75) should apply, as appropriate to the level of development of the
candidate vaccine.

A.6 Retained samples
A sufficient number of samples should be retained for future studies and needs. Vaccine lots
that are to be used for clinical trials may serve as a reference material in the future, and a
sufficient number of vials should be reserved and stored appropriately for that purpose.

A.7 Labelling
The labelling recommendations provided in the WHO Good manufacturing practices for
biological products (76) should be followed as appropriate. The label of the carton enclosing
one or more final containers, or the leaflet accompanying the container, should include, at a
minimum, as agreed with the NRA:
• the name of the vaccine;
• a statement that specifies the nature and content of adjuvant contained in one human
dose, if any;
• the immunization schedule, and the recommended route(s) of administration;
• the number of doses, if the product is issued in a multiple-dose container;
• the name and concentration of any preservative added;
• a statement on the nature and quantity, or upper limit, of any antibiotics present in the
vaccine;
• the temperature recommended during storage and transport;
• the expiry/retest date;
• any special dosing schedules;
• contraindications, warnings and precautions, and information on concomitant vaccine
use and on adverse events.

A.8 Distribution and transport
The recommendations provided in the WHO Good manufacturing practices for biological
products (76) appropriate for a candidate vaccine should apply. Shipments should be
maintained within specified temperature ranges, as applicable, and packages should contain
cold-chain monitors, if temperature requirements need to be controlled (79). If claiming that
the cold-chain is not required, then the conditions under which stability has been established
(e.g. temperature highs and maximum length of time) should be described and data
supporting these claims provided.

A.9 Stability testing, storage and expiry date
The recommendations given in Good manufacturing practices for biological products (76)
and in the Guidelines on stability evaluation of vaccines (78) appropriate for the respective
plasmid DNA vaccine should apply. Furthermore, the Guideline on the stability evaluation of
vaccines for use under extended controlled temperature conditions might apply (80). The
statements concerning storage temperature and expiry date that appear on the primary and
secondary packaging should be based on experimental evidence and should be submitted to
the NRA for approval.

A.9.1 Stability
Adequate stability studies form an essential part of vaccine development. The stability of the
final product in the container proposed for use should, therefore, be determined and the
results used to set a shelf life under appropriate storage conditions. Parameters that might be
stability-indicating should be measured. These may include parameters such as appearance,
quantity, and percentage super-coiled. The parameters to be measured should be described
and specifications defined. Real-time stability studies should be undertaken for this purpose,
but accelerated stability studies at elevated temperatures may provide complementary
supporting evidence for the stability of the product and confirm the stability-indicating nature
of the assays used to determine stability. Container-closure system compatibility for storage
stability, including leachables and extractables should be assessed and discussed. The
stability assessment should comply with WHO Guideline for Stability Evaluation of Vaccines (78).

A.9.2 Storage conditions
The vaccine should not be stored for a length of time and at a temperature greater than that shown by the manufacturer to be compatible with a minimal loss of potency before being distributed by the manufacturing establishment or before being issued from a storage site. The maximum duration of storage should be fixed with the approval of the NRA, based on results of stability studies, and should be such as to ensure that all quality specifications for the final product, including the minimum potency specified on the container or package, are maintained until the end of shelf life. During clinical trials, this period should ideally be at least equal to the expected duration of vaccine administration in the clinical trial.

A.9.3 Expiry date
The expiry date should be defined on the basis of shelf-life in the final container and should be supported by stability studies approved by the NRA. The expiry date should be based on the date of blending of the final bulk, the date of filling, or the date of the first valid potency test on the final lot, as appropriate, and agreed with the NRA.

Part B. Nonclinical evaluation of plasmid DNA vaccines

The nonclinical evaluation of the candidate vaccine should be considered on a product-specific basis taking into account the intended clinical use of the product. The selection of appropriate studies relating to the toxicology and pharmacology (proof-of-concept) of the product may be determined from either or both of the following WHO guidelines:

- WHO Guidelines on the Nonclinical Evaluation of Vaccines (54)
- WHO Guidelines on the Nonclinical Evaluation of Vaccine Adjuvants and Adjuvanted Vaccines (55)

One issue of relevance for DNA vaccines would be the case when a plasmid component encodes a cytokine or other immunomodulatory protein. In such cases, the choice of animal model selected for nonclinical evaluations may need to consider the species specificity of any biological activity of the product. It may be necessary to conduct proof-of-concept studies with species-relevant analogues to the human-specific product to be developed. Toxicological evaluations, including immunotoxicity, may be performed with the human-specific product and/or the analogue, and concurrence from the NRA(s) should be sought in this matter.

Another issue that may be relevant to DNA vaccines would be their use in heterologous prime-boost regimens. When there are no pre-existing nonclinical or clinical data on the individual vaccines in the regimen (or, at least, the DNA vaccine component of the regimen), the nonclinical program may be the same or similar to the existing guidelines. However, when there is significant clinical experience with each vaccine in the regimen expressing the
same or related immunogens (e.g. other viral envelope proteins, other influenza
hemagglutinins, limited modifications in amino acid sequences between new candidate and
previously tested candidate), it is expected that the nonclinical program could be abbreviated
\((81)\). The existing clinical experience would be more informative to the safety and
performance of the vaccine components in a combined regimen than would be animal data. It
might be suitable to assess certain safety parameters within an immunogenicity (or challenge-
protection) study of the new vaccine regimen(s) to determine whether the safety profile
appears similar in animals as previous studies performed on the DNA vaccine plasmid
backbone expressing a related immunogen. This approach is consistent with the principles of
the 3Rs to refine, reduce, or replace the use of animals in product safety testing, whenever
suitable alternative methods are available.

Likewise, for new DNA vaccines based on existing plasmid backbones for which there is
already significant nonclinical (and possibly clinical) experience, an abbreviated nonclinical
program should be considered \((21, 22, 66, 67)\). If the new gene insert is related to other
antigens that have already been studied nonclinically or clinically, a case may be made to
support a safe starting dose and regimen for the new vaccine based on the existing nonclinical
and clinical data without need for additional toxicology studies.

In the situation of rapid development of a vaccine against priority pathogens for public health
emergencies, consideration may be given to an abbreviated nonclinical program as follows:
In the case where the plasmid is constructed from a backbone that has already been tested
clinically with a related antigen (e.g. in the case of a pandemic influenza strain when a
seasonal or other potential pandemic strain antigen has been tested), then the nonclinical
program might be limited to an immunogenicity study(ies). However, that/those studies
should collect as much safety data as feasible given that many nonclinical immunogenicity
studies are performed without full compliance to Good Laboratory Practices. Depending on
the species used, if it is feasible to collect blood not only for immunogenicity, but also for
hematology and chemistry assessments, these analyses should be performed. In addition,
depending on the species used, if the animals are sacrificed at the end of the immunogenicity
study, then gross pathology and targeted histopathology should be performed. In addition,
information about physical exams or clinical findings should be captured and reported to the
NRA. If the species used are too small (e.g. mice) to permit individual clinical pathology or a
species that is not sacrificed because the animals will be used in other research after the
immunogenicity study is performed (e.g. non-human primates), then whatever safety data can
be collected should be reported to the NRA. If there is safety information about veterinary
vaccines expressing related antigens, this information might be useful to provide to the NRA.

In the case of rapid development of a vaccine against priority pathogens for public health
emergencies where the plasmid backbone has been tested clinically, but the antigen is novel
(not related to another antigen that has been tested clinically), then this approach might not be
sufficient. The decision about what type of nonclinical safety/toxicology information required
might be guided by what and how much is known about the natural disease in terms of the
pathology, particularly immunotoxicity. If the natural disease is associated with immunopathology due to cross-reactivity, autoimmunity, or immunity-associated disease enhancement, then toxicology studies would likely be needed to assure that the novel antigen is not associated with these effects. In the cases where natural disease is not associated with immunopathology or where little is known about the natural disease, discussion with the NRA should be undertaken. Finally, in the cases where both the plasmid backbone and the antigen are novel, discussion with the NRA also should be undertaken.

Although biodistribution studies were previously suggested for DNA vaccines, data acquired to date have not shown reason to continue such evaluations. Plasmid DNA remains largely at the injection site, does not biodistribute at clinically relevant levels nor widely throughout the body. Further, it does not target the ovaries nor testes and clears from the body by degradation (67, 68, 83). However, most of these data were collected in adult animals. There is a limited amount of information available from developmental toxicology or biodistribution studies in maternal or fetal animals (83). This leaves a slight evidence gap regarding the safe use of plasmid DNA vaccines in maternal immunization. Publication of any developmental toxicology studies already performed on DNA vaccines is encouraged.

In the case of DNA vaccines against priority pathogens for public health emergencies, as identified by the WHO R&D Blueprint, the following documents may be of relevance and should be consulted:

- WHO Guidelines on Nonclinical Evaluation of Vaccines (54)
- WHO Guidelines on the Nonclinical Evaluation of Vaccine Adjuvants and Adjuvanted Vaccines (55)
- An R&D Blueprint for Action to Prevent Epidemics [May 2016] (84)
- An R&D Blueprint for Action to Prevent Epidemics [Update 2017] (85)

Finally, the WHO has more than sixty guidelines and recommendations for vaccines against specific diseases, which may be consulted if they cover the disease of relevance for the given DNA vaccine. It should be anticipated that further disease/product-specific guidelines would be considered at the appropriate time when any given DNA vaccine is near to submission for marketing authorization.

Part C. Clinical evaluation of plasmid DNA vaccines

The clinical evaluation expectations for clinical trial authorization or marketing authorization will be driven by the disease against which the DNA vaccine is being or has been developed and the mode-of-action (or mechanism-of-action) of the vaccine to prevent that disease. Clinical studies should adhere to the principles described in the WHO Guidelines for good clinical practice (GCP) for trials on pharmaceutical products (86) and the WHO Guidelines on clinical evaluation of vaccines: regulatory expectations (56). Likewise, post-marketing pharmacovigilance is discussed in this latter guideline.
One issue that is of relevance to DNA vaccines is their use in heterologous prime-boost regimens. Some guidance on this issue is provided in the Guidelines listed above. One challenge for marketing authorization will be labelling of each of the vaccines in the regimen that ultimately demonstrates efficacy, as this type of heterologous prime-boost regimen remains novel at this time, and healthcare workers and public health systems are not necessarily ready for this approach. Labelling to prevent mix-ups and mis-dosing will be crucial to a successful public health campaign or routine use. Another matter that may require attention is attribution of safety events seen following immunization and how it will be clearly established whether the event is due to the prime or the boost vaccine, even if the event occurs late (e.g. after boosting).

A potential advantage of DNA vaccines may be their use during pregnancy. This issue is discussed in the above guidelines (56) in Section 5.6.4 and succeeding subsections. Additional information that may be useful may be obtained from regional or NRA-specific guidelines. These additional guidelines are not specific to DNA vaccines and may apply to a variety of product types, but they do provide guidance on clinical trial designs and labelling issues relevant to maternal immunization.

When a specific delivery device has been used to demonstrate efficacy of a DNA vaccine, it will be important to consider pharmacovigilance plans to capture any off-label use of an alternative device, including needle and syringe delivery. Clinical trial design for the pivotal efficacy trial(s) will be important in terms of whether the control group(s) will have the same device used to deliver the placebo or other type of control (e.g. another vaccine). It is important to maintain a double-blinded, randomized, controlled trial design to gain pivotal efficacy data, whenever feasible. However, appropriateness of use of the delivery device with a substance other than the intended candidate vaccine has to be considered, in terms of ethics and risk/benefit considerations. Finally, the labelling should reflect the device parameters (e.g. pulse rate) used in the pivotal trial(s), as should the protocols for those trials.

In the case of DNA vaccines against priority pathogens for public health emergencies, as identified by the WHO R&D Blueprint, the following documents may be of relevance and should be consulted:

- The WHO R&D Blueprint\(^1\);
- List of Blueprint Priority Diseases\(^2\);
- R&D Blueprint Plan of Action\(^3\);
- WHO Target Product Profiles\(^4\)

\(^1\) See http://www.who.int/blueprint/about/en/
\(^3\) See http://www.who.int/research-observatory/analyses/rd_blueprint/en/index5.html
Finally, as stated above, the WHO has more than sixty guidelines and recommendations for vaccines against specific diseases\(^5\) and further disease/product-specific guidelines would be considered at the appropriate time when any given DNA vaccine is near to submission for marketing authorization.

Part D. Guidelines for NRAs

D.1 General guidelines

The general recommendations for control laboratories given in the WHO Guidelines for national authorities on quality assurance for biological products (87) and WHO Guidelines for independent lot release of vaccines by regulatory authorities (88) should apply after the vaccine product has been granted a marketing authorization. These recommendations specify that no new biological substance should be released until consistency of lot manufacturing and quality has been established and demonstrated. The recommendations do not apply to material for clinical trials.

The detailed production and control procedures as well as any significant changes in them that may affect the quality, safety and efficacy of DNA vaccines should be discussed with and approved by the NRA. Close to marketing authorization of each DNA vaccine, specific guidelines for the vaccine and the disease it targets may be prepared by WHO through their consultative process for adoption by the WHO ECBS. For DNA vaccines that target diseases for which there are existing vaccines and corresponding guidelines, it may be appropriate to consider in tandem Part A from these guidelines and Parts B and C from the disease-specific guidelines.

For control purposes, the international standards currently in force should be obtained for the purpose of calibration of the national/regional/working standards (89). The NRA may obtain the product-specific/working reference from the manufacturer to be used for lot release until the international/national standard preparation is established.

Consistency of production has been recognized as an essential component in the quality assurance of DNA vaccines, as with any vaccine. In particular, the NRA should carefully monitor production records and quality control test results for clinical lots, as well as a series of consecutive lots of the vaccine, produced using the procedures and control methods that will be used for the marketed vaccine.

D.2 Official release and certification

A vaccine lot should be released only if it fulfils the national requirements and/or Part A of these guidelines or disease/product-specific WHO guidelines, as relevant to the product.

\(^5\) See https://www.who.int/biologicals/vaccines/en/
A protocol for the manufacturing and control of DNA vaccines, based on the model summary protocol provided in Appendix 1 and signed by the responsible official of the manufacturing establishment, should be prepared and submitted to the NRA in support of a request for release of vaccine for marketing.

A lot release certificate signed by the appropriate official of the NRA should be provided, if requested by a manufacturing establishment, and should certify whether or not the lot of vaccine in question meets all national requirements, as well as Part A of these guidelines. The certificate should provide sufficient information on the vaccine lot. The official national release certificate should be provided to importers of the vaccines. The purpose of the certificate is to facilitate the exchange of vaccines between countries. A model NRA Lot Release Certificate is provided below in Appendix 2.

Authors and acknowledgements

The preliminary draft of these WHO Guidelines was prepared by Dr R. Sheets, consultant, USA; Dr H. Meyer, Paul-Ehrlich-Institut, Germany; Dr E. Nkansah, Food and Drugs Authority (FDA), Ghana; Dr M. Liu, Karolinska Institute, Stockholm, Sweden; Dr K. Peden, FDA, USA; Dr H-N. Kang, World Health Organization, Switzerland; and Dr I. Knezevic, World Health Organization, Switzerland based on the discussion during the WHO informal consultation on regulatory expectations for the evaluation of nucleic acid vaccines held in Geneva, Switzerland, 21-23 February 2018 attended by: Dr P. Aprea, Administración Nacional de Medicamentos, Alimentos y Tecnología Medica (ANMAT), Argentina; Dr F. Bähner, CureVac AG, Germany; Dr J. Boyer, Inovio Pharmaceuticals, USA; Dr K. E. Broderick, Inovio Pharmaceuticals, USA; Dr S. Darbooy, FDA, Islamic republic of Iran; Dr P. Duffy, National Institutes of Health, USA; Dr A. Farnsworth, Health Canada, Canada; Dr L. Gibbs, Inovio Pharmaceuticals, USA; Dr U. Gompels, Department Infectious & Tropical Diseases Faculty, UK; Dr E. Grabski, Paul-Ehrlich-Institut, Germany; Dr B. Graham, National Institutes of Health, USA; Dr D. Gutsch, Merck Research Laboratories, USA (International Federation of Pharmaceutical Manufacturers & Associations (IFPMA) representative); Dr W. Huang, National Institutes for Food and Drug Control (NIFDC), P. R. China; Dr J. Jeong, ViroMed Co., Republic of Korea; Dr K. Johansen, Coalition for Epidemic Preparedness Innovations (CEPI), Norway; Dr R. Karron, Johns Hopkins University, USA; Dr D. Kaslow, PATH - Vaccine Development Global Program, USA; Dr G. Kim, Ministry of Food and Drug Safety, Republic of Korea; Dr M. Liu, Karolinska Institute, Stockholm, Sweden; Dr D. Loos, Paul-Ehrlich-Institut, Germany; Dr Z. Makatini, University of Limpopo, South Africa; Dr M. A. Malungu, Pharmacy and Poisons Board, Kenya; Dr J. Maslow, GeneOne Life Science Inc, USA; Dr T. Matano, National Institute of Infectious Diseases, Japan; Dr H. Meyer, Paul-Ehrlich-Institut, Germany; Dr E. Nkansah, FDA, Ghana; Dr G. Otten, Seqirus, USA (IFPMA representative); Dr M. Page, National Institute for Biological Standards and Control (NIBSC), UK; Mr Y. Park, GeneOne Life Science Inc, Republic of Korea; Dr K. Peden, FDA, USA; Dr M. Powell, Medicines and Healthcare Products Regulatory Agency, UK; Dr T. Racine, Université Laval, Canada; Dr M. Reers,
Biological E Vaccines, France (Developing Countries Vaccine Manufacturers Network (DCVMN) representative); Dr M. Savile, CEPI, Norway; Dr M. Savkina, the FSBI “SCEEMP of Ministry of Health, Russian Federation; Dr R. Sheets, Grimalkin Partners, USA; Dr I. Smolenov, Moderna Therapeutics, USA; Dr F. R. S. Sobral, National Health Surveillance Agence (ANVISA), Brazil; Dr R. Vogels, Janssen Vaccines & Prevention, Netherlands (IFPMA representative); Dr B. Wahren, Karolinska Institutet, Sweden; Dr D. B. Weiner, The Wistar Institute, USA; Dr I. Yoon, International Vaccine Institute (IVI), Republic of Korea; Dr H-N. Kang, World Health Organization, Switzerland; Dr I. Knezevic, World Health Organization, Switzerland; Dr M. Friede, World Health Organization, Switzerland; Dr B. Giersing, World Health Organization, Switzerland; Dr M. Preziosi, World Health Organization, Switzerland.

The first draft of these WHO Guidelines was then prepared by a WHO Drafting Group comprising by Dr R. Sheets, consultant, USA; Dr H. Meyer, Paul-Ehrlich-Institut, Germany; Dr M. Liu, Karolinska Institute, Stockholm, Sweden; Dr K. Peden, FDA, USA; and Dr H-N. Kang, World Health Organization, Switzerland, taking into consideration the comments received from: Dr P. Aprea, Administración Nacional de Medicamentos, Alimentos y Tecnología Medica (ANMAT), Argentina; Dr J. Boyer, Inovio Pharmaceuticals, USA; Dr D. Gutsch, Merck Research Laboratories, USA; Dr W. Huang, NIFDC, P. R. China; Dr D. Kaslow, PATH - Vaccine Development Global Program, USA; Dr M. Page, NIBSC, UK; Dr M. Saville, Coalition for Epidemic Preparedness Innovations (CEPI); Dr M. Savkina, the FSBI “SCEEMP of Ministry of Health, Russian Federation; and Dr R. Vogels, Janssen Vaccines & Prevention, Netherlands.

The resulting draft document was then posted on the WHO Biologicals website for a first round of public consultation from 30 July to 20 September 2019, and comments were received from following experts: Ms T. Cervinkova (provided the consolidated comments of IFPMA), Switzerland; Mr J. Charbonneau (provided the consolidated comments of Health Canada), Canada; Dr M. Savkina, the FSBI “SCEEMP of Ministry of Health, Russian Federation.

The second draft was prepared by the same Drafting Group, taking into consideration public comments above and agreements at the second WHO informal consultation on Guidelines on assuring the quality, safety, and efficacy of DNA vaccines, held during 9-10 December 2019, Geneva, Switzerland, attended by the following participants (90):

Dr E. Abwao, Pharmacy and Poisons Board, Kenya; Dr C. Bae, Ministry of Food and Drug Safety, Republic of Korea; Dr C. Blades, Brazilian Health Regulatory Agency (ANVISA), Brazil; Dr J. Boyer, Inovio Pharmaceuticals, USA; Dr K. E. Broderick, Inovio Pharmaceuticals, USA; Dr P. Duffy, National Institutes of Health, USA; Dr A. Farnsworth, Health Canada, Canada; Dr J. Gangakhedkar, Central Drugs Standard Control Organization (CDSCO), India; Dr D. Gutsch, Merck & Co, Inc, USA (International Federation of Pharmaceutical Manufacturers & Associations (IFPMA) representative); Dr R. Hafiz, SFDA, Saudi Arabia; Dr N. Jackson, Coalition for Epidemic Preparedness Innovations (CEPI),
Norway; Dr D. Kaslow, PATH - Vaccine Development Global Program, USA; Dr A. Khan, Merck & Co, Inc, USA (International Federation of Pharmaceutical Manufacturers & Associations (IFPMA) representative); Dr J. Ledgerwood, National Institutes of Health, USA; Dr M. Liu, Karolinska Institute, Stockholm, Sweden; Dr J. Maslow, GeneOne Life Science Inc, USA; Dr H. Meyer, Paul-Ehrlich-Institut, Germany; Dr E. Nkansah, Food and Drugs Authority, Ghana; Mr Y. Park, GeneOne Life Science Inc, Republic of Korea; Dr A. Patel, The Wistar Institute, USA; Dr K. Peden, US Food & Drug Administration, USA; Dr T. Racine, Université Laval, Canada; Dr N. Rose, National Institute for Biological Standards and Control (NIBSC), UK; Dr P. Roy, London School of Hygiene & Tropical Medicine, UK; Dr R. Sheets, consultant, USA; Dr M. Song, International Vaccine Institute (IVI), Republic of Korea; Dr W. Wei, Center for Drug Evaluation, China; Dr H.-N. Kang, World Health Organization, Switzerland; Dr I. Knezevic, World Health Organization, Switzerland; Dr M. Alali, World Health Organization, Switzerland.

The document WHO/BS/2020.2380 is now being posted on the WHO Biologicals website for a second round of public consultation from 13 May to 13 June 2020.

References//

47. Sarwar UN, Costner P, Enama ME, Berkowitz N, Hu Z, Hendel CS et al. Safety and immunogenicity of DNA vaccines encoding Ebolavirus and Marburgvirus wild-type
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318920/, accessed 30 April 2020)

Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines
assessed separately and concomitantly in healthy Ugandan adults: a phase 1b,
randomised, double-blind, placebo-controlled clinical trial. Lancet. 2015 Apr
2020).

Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1
randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime
with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults.

cytomegalovirus DNA vaccine, in recipients undergoing allogeneic hematopoietic cell

Minicircles. Hum Vaccin Immunother. 2014;10(5):1306-8 (abstract:

52. Dalmo RA. DNA vaccines for fish: Review and perspectives on correlates of protection. J
April 2020).

potential integration of the DNA plasmid vaccine CLYNAV into the salmon genome.
EFSA Journal. 2017;15(1)
2020).

54. Guidelines on nonclinical evaluation of vaccines. In: WHO Expert Committee on
Biological Standardization. Fifty-fourth Report. Geneva, World Health Organization,
http://www.who.int/biologicals/publications/trs/areas/vaccines/nonclinical_evaluation/AN
NEX%201Nonclinical.P31-63.pdf?ua=1, accessed 40 April 2020).

55. Guidelines on the Nonclinical Evaluation of Vaccine Adjuvants and Adjuvanted
Vaccines, In: WHO Expert Committee on Biological Standardization. Sixty-Fourth
Series 987; http://www.who.int/biologicals/areas/vaccines/TRS_987_Annex2.pdf?ua=1,
accessed 30 April 2020)

Committee on Biological Standardization. Sixty-eighth report. Geneva, World Health

81. Sheets RL, Stein J, Bailer RT, Koup RA, Andrews C, Nason M et al. Biodistribution and Toxicological Safety of Adenovirus Type 5 and Type 35 Vectored Vaccines Against Human Immunodeficiency Virus-1 (HIV-1), Ebola, or Marburg Are Similar Despite Differing Adenovirus Serotype Vector, Manufacturer’s Construct, or Gene Inserts. J

84. An R&D Blueprint for Action to Prevent Epidemics [May 2016] [http://www.who.int/blueprint/about/r_d_blueprint_plan_of_action.pdf?ua=1]

Appendix 1

Model summary protocol for the manufacturing and control of plasmid DNA vaccines

The following provisional protocol is intended for guidance. It indicates the information that should be provided as a minimum by the manufacturer to the NRA after the vaccine product has been granted a marketing authorization. The protocol is not intended to apply to material intended for clinical trials.

Since the development of these vaccines is incomplete at the time of writing this document, detailed requirements are not yet finalized. Consequently, only the essential requirements are provided in this appendix. Information and tests may be added or omitted (if adequate justification is provided) as necessary to be in line with the marketing authorization approved by the NRA. It is therefore possible that a protocol for a specific product will differ from the model provided here. The essential point is that all relevant details demonstrating compliance with the license and with the relevant WHO Guidelines on a particular product should be given in the protocol submitted.

The section concerning the final product should be accompanied by a sample of the label and a copy of the leaflet that accompanies the vaccine container. If the protocol is submitted in support of a request to permit importation, it should also be accompanied by a Lot Release Certificate from the NRA of the country in which the vaccine was produced and/or released stating that the product meets national requirements as well as Part A of these WHO Guidelines.

1. Summary information on finished product (final vaccine lot)

- International name:
- INN (if applicable):
- Trade name/commercial name:
- Product licence (marketing authorization) number:
- Country:
- Name and address of manufacturer:
- Name and address of product licence-holder, if different:
- Plasmid designation (if applicable):
- Gene Insert(s) (if applicable):
- Lot number(s):
- Type of container:
- Number of filled containers in this final lot:
- Number of doses per container:
1. Preservative and nominal concentration (if applicable):
2. Summary of the composition (summary of qualitative and quantitative composition of the vaccine, including any adjuvant and other excipients):
3. Target group:
4. Shelf life approved (months):
5. Expiry date:
6. Storage conditions:

2. Control of source material

2.1 Plasmid seeds (where applicable)

2.1.1 Seed banking system
- Name and identification of plasmid(s):
- Origin of all genetic components (if applicable):
- Construction of plasmid DNA vaccine:
- Nucleotide sequence of the transgene and plasmid backbone:
- Antigenic analysis, copy number, yield (in vitro/in vivo):
- Seed bank genealogy with dates of preparation, passage number and date of coming into operation:
- Tests for contaminating bacteria, fungi, (for plasmid seeds):
- Details of animal or human components of any reagents used in the manufacture of seed banks, including culture medium:
- Genetic stability at the level of a plasmid pre-master seed or plasmid master seed to its sequence at, or preferably beyond, the anticipated maximum passage level:
- Confirmation of approval for use by manufacturer, and the basis for that approval.

2.1.2 Tests on working seed lot production (if applicable)
- Antibiotic resistance (if applicable):
- Marker genes or selection genes (if applicable and different from antibiotic resistance gene):
- Identity:
- Bacterial and fungal contamination:

2.2 Cultures and culture media (where applicable)

2.2.1 Cell banking system
- Name and identification of cell strain and bank:
- Details of any manipulations (including genetic manipulations) performed on the parental cell strain in the preparation of the production cell strain:
- Culture medium:
- Cell bank genealogy with dates of preparation, passage number and date of coming into operation:
2. Confirmation of approval for use by manufacturer, and the basis for that approval:
3. Test for absence of bacterial and fungal contamination:
4. Details of animal or human components of any reagents used in manufacture of cell banks, including culture medium:
5. Genetic stability (if genetically manipulated).

2.2.2 Tests on working cell bank production (if applicable)
1. Identification of cell bank
2. Culture medium:
3. Cell bank genealogy with dates of preparation, passage number and date of coming into operation:
4. Confirmation of approval for use by manufacturer, and the basis for that approval:
5. Test for absence of bacterial and fungal contamination:
6. Details of animal or human components of any reagents used in manufacture of cell banks, including culture medium:
7. Genetic stability (if genetically manipulated).

3. Control of vaccine production

3.1 Control of purified plasmid bulk (for each monovalent plasmid, if applicable)

3.1.1 Information on manufacture:
1. Batch number(s):
2. Date of manufacture of each batch:
3. Identification of reagents used during production or other phases of manufacture, including media components and antibiotics, if applicable):
4. Total volume of purified plasmid bulk:
5. Volume(s), storage temperature, storage time and approved storage period:

3.1.2 Tests on purified plasmid bulk(s):
1. Identity:
2. Purity:
3. Antigen content (quantity):
4. Physical state (i.e., % supercoiled):
5. Sterility (bacteria and fungi):
6. Residual levels of reagents used during production or other phases of manufacture, including media components and antibiotics, if applicable):
7. Residual protein content:
8. Residual DNA derived from the expression system:
9. Residual RNA:
10. Endotoxins:
11. Only if not feasible on final vaccine due to multi-component formulation, potency (expression of mRNA or protein):
3.2 Control of final bulk (where applicable)

3.2.1 Information on manufacture
- Lot number(s):
- Date of formulation:
- Total volume of final bulk formulated:
- Monovalent bulk plasmid(s) used for formulation:
- Volume(s), storage temperature, storage time and approved storage period:
- Lot number/volume added:
- Name and concentration of added substances (for example, adjuvants, facilitators, etc., if applicable).

3.3.2 Tests on final bulk or final containers, as applicable
- Identity:
- Purity:
- Antigen content (quantity):
- Physical state (i.e., % supercoiled):
- Sterility (bacteria and fungi):
- Endotoxins:
- Potency (expression of mRNA or protein)

4. Filling and containers
- Lot number:
- Date of filling:
- Type of container:
- Volume of final bulk filled:
- Filling volume per container:
- Number of doses, if the product is presented in a multiple-dose container:
- Number of containers filled (gross):
- Number of containers rejected during inspection:
- Number of containers sampled:
- Total number of containers (net):
- Maximum period of storage approved (expiry dating):
- Storage temperature:

5. Control tests on final vaccine lot
- Inspection of final containers:
- Identity:
- Appearance:
- pH (if applicable):
6. Certification by the manufacturer

Name of Head of Production or Quality Assurance (typed) ________________________________

Certification by the person from the control laboratory of the manufacturing company taking
overall responsibility for the production and control of the vaccine.

I certify that lot no. _______________ of [name of] plasmid DNA vaccine, whose
number appears on the label of the final containers, meets all national requirements and satisfies
Part A\(^1\) of the WHO Guidelines on the quality, safety and efficacy of plasmid DNA vaccines\(^2\)
and Part A of any disease-specific relevant WHO guidelines.

Name (typed) ___

Signature __

Date __

\(^1\) With the exception of provisions on distribution and shipping, which the NRA may not be
in a position to assess.

\(^2\) WHO Technical Report Series, No. XXXX, Annex X.

7. Certification by the NRA

If the vaccine is to be exported, attach the NRA Lot Release Certificate (as shown in Appendix
2), a label from a final container and an instruction leaflet for users.
Appendix 2

Model NRA Lot Release Certificate for plasmid DNA vaccines

Certificate no._______________

This certificate is to be provided by the NRA of the country where the vaccine has been manufactured, on request by the manufacturer.

The following lot(s) of [name of] plasmid DNA vaccine produced by______________________________
in ______________________________ whose lot numbers appear on the labels of the final containers, complies with the relevant specification in the marketing authorization and provisions for the release of biological products and Part A of the WHO Guidelines on the quality, safety and efficacy of plasmid DNA vaccines and Part A of the relevant disease-specific WHO guidelines and complies with WHO good manufacturing practices for pharmaceutical products: main principles, WHO good manufacturing practices for biological products, and Guidelines for independent lot release of vaccines by regulatory authorities.

The release decision is based on__

The certificate may include the following information:

- name and address of manufacturer;
- site(s) of manufacturing;
- trade name and common name of product;
- marketing authorization number;
- lot number(s) (including sub-lot numbers and packaging lot numbers if necessary);
- type of container used;
- number of doses per container;
- number of containers or lot size;
- date of start of period of validity (for example, manufacturing date) and expiry date;
- storage conditions;
- signature and function of the person authorized to issue the certificate;
- date of issue of certificate;
- certificate number.
The Director of the NRA (or other appropriate authority)

Name (typed) __

Signature __

Date __

1 Name of manufacturer.

2 Country of origin.

3 If any national requirements are not met, specify which one(s) and indicate why release of the lot(s) has nevertheless been authorized by the NRA.

4 With the exception of provisions on distribution and shipping, which the NRA may not be in a position to assess.

5 WHO Technical Report Series, No. XXXX, Annex X.

9 Evaluation of the product-specific summary protocol, independent laboratory testing and/or specific procedures laid down in a defined document, and so on as appropriate.