Modelling the impact of a tax on sugar-sweetened beverages in the Philippines: an extended cost–effectiveness analysis

Akshar Saxena, Adam D Koon, Leizel Lagrada-Rombaua, Imelda Angeles-Agdeppa, Benjamin Johns & Mario Capanzana

Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, United States of America (USA).
International Development Division, Abt Associates Inc., 6130 Executive Blvd, Rockville, MD 20852, USA.
Independent Consultant, Block 14 Lot 4 Lapulapu Street, New Capitol Estates 1, Batasan Hills, Quezon City, Philippines 1126.
Food and Nutrition Research Institute, Department of Science and Technology, Manila, Philippines.

Correspondence to Adam D Koon (email: Adam_Koon@abtassoc.com).

(Submitted: 15 July 2018 – Revised version received: 31 October 2018 – Accepted: 8 November 2018 – Published online: 5 December 2018)

Abstract

Objective To assess the potential impact of a new tax on sugar-sweetened beverages on premature deaths associated with noncommunicable diseases in the Philippines.

Methods In January 2018, the Philippines began imposing a tax of 6 Philippine pesos per litre (around 13%) on sugar-sweetened beverages to curb the obesity burden. Using national data sources, we conducted an extended cost–effectiveness analysis to estimate the effect of the tax on the numbers of premature deaths averted attributed to type 2 diabetes mellitus, ischaemic heart disease and stroke, across income quintiles over the period 2018–2037. We also estimated the financial benefits of the tax from reductions in out-of-pocket payments, direct medical costs averted and government health-care cost savings.

Findings The tax could avert an estimated 5913 deaths related to diabetes, 10 339 deaths from ischaemic heart disease and 7950 deaths from stroke over 20 years. The largest number of deaths averted could be among the fourth and fifth (highest) income quintiles. The tax could generate total health-care savings of 31.6 billion Philippine pesos (627 million United States dollars, US$) over 20 years, and raise 41.0 billion Philippine pesos (US$ 813 million) in revenue per annum. The poorest quintile could bear the smallest tax burden increase (14% of the additional tax; 5.6 billion Philippine pesos) and have the lowest savings in out-of-pocket payments due to relatively large health-care subsidies. Finally, we estimated that 13 890 cases of catastrophic expenditure could be averted.

Conclusion The new sugar-sweetened beverage tax may help to reduce obesity-related premature deaths and improve financial well-being in the Philippines.
Introduction

Sugar-sweetened beverages are a driver of obesity,¹-⁴ and increasingly contribute to the burden of noncommunicable disease in low- and middle-income countries.⁵ This is particularly true in the Philippines, where 31.1% (17.5 million) of the 56.3 million adults in 2013 were overweight and the percentage of overweight youth has nearly doubled, from 4.9% (0.9 million of 18.5 million) to 8.3% (1.7 million of 20.3 million), in 10 years.⁶ This has left health officials looking for strategies to mitigate the burden of obesity.

On 19 December 2017, the Tax Reform for Acceleration and Inclusion Act was signed into law and was implemented in January 2018. This included a 6 Philippine pesos per litre excise tax on sugar-sweetened beverages made with caloric or non-caloric sweeteners and a 12 Philippine pesos per litre tax on beverages made with high-fructose corn syrup (equivalent to 0.12 United States dollars, US$ and US$ 0.24 in January 2018, respectively). This two-tiered levy represented retail price increases of approximately 13% from 45 to 51 Philippine pesos per litre of regular cola and 26% to 45 to 57 Philippine pesos per litre of cola made with high-fructose corn syrup, respectively. Milk, 100% natural fruit juice and 3-in-1 instant coffee were excluded.

The Philippines is one of 27 countries that has introduced a sugar-sweetened beverage tax, joining others such as Chile, France, Mexico, Spain and six municipalities in the United States of America.⁷ This solution to curbing the rapid escalation of obesity has been endorsed by the World Health Organization and others as a cost–effective policy solution, if retail prices increase sufficiently (10–20%) to reduce consumption.⁸⁹ Yet, evidence on the effectiveness and fairness of these new sugar-sweetened beverage taxes remains limited.

In this paper, we investigated the hypothetical impact of the new tax for different income groups in the Philippines using extended cost–effectiveness analysis.¹⁰ This approach is important for a study in the Philippines, where economic inequalities persist and the consequences of public policy are not always clear. Some people, including industry representatives, have expressed concerns that taxes on direct consumption unfairly burden low-income consumers.¹¹ The evidence on sugar-sweetened beverage taxation is insufficient to support this claim. This study therefore sought to fill a gap in the global pool of knowledge by
examining the relative impact of the new tax12–17 on the health and financial well-being of households in the Philippines.

Methods

Overview

We used a method of extended cost–effectiveness analysis based on studies of increased tobacco taxes and other interventions.10,18–20 Extended cost–effectiveness analysis is a policy assessment method for estimating the impact on three major outcomes: (i) health benefits (i.e. the reduction in premature mortality); (ii) elimination of out-of-pocket expenditure by patients, reduced government expenditure on health and the financial risk protection associated with those reduced expenditures; and (iii) the consequences across socioeconomic groups (e.g. income quintiles).

We applied the method to ascertain the consequences for different income groups of imposing a sugar-sweetened beverage tax in the Philippines.

Estimation methods

\textit{Beverage tax, price elasticity and consumption}

We converted the 6 Philippine pesos tax to a percentage (13\%) based on a price of 45 Philippine pesos per litre of a regular cola drink, which was the mean price of sugar-sweetened soft drinks in the Philippines (available in the data repository).21 We then multiplied the percentage change in price with price elasticities to obtain the percentage change in quantity of cola consumed. In line with evidence from other low- and middle-income countries, we assumed that 100\% of the price increase would be paid by consumers instead of by distributors or manufacturers (i.e. pass-through rate of 100\%).22

We multiplied the cola consumption in each quintile by the own-price elasticity estimate for its respective quintile. Own-price elasticity is the change in quantity of a product purchased in response to a change in its price. As we did not have local price elasticity estimates, we used elasticity estimates of demand for sugar-sweetened beverages by income quintile from another middle-income country, Mexico23 (which are similar to estimates from Chile; available in the data repository).21 We used the pre-tax per capita daily consumption of sugar-sweetened beverages by age, sex and income quintiles from the Philippines Food and Nutrition Research Institute (available in the data repository).21
Disease incidence

We used a previously published mathematical model16,24 to estimate the effect of reduced consumption of sugar-sweetened beverages on disease incidence over the 20-year period 2018–2037. This model has been used to estimate the impact of sugar taxes on disease incidence and mortality in Australia,15 Canada17 and South Africa.12–14

Following previous methods,12,16 we first calculated the effect of reduced consumption on body mass index (BMI) by converting change in consumption into change in energy intake and translating this into impact on body weight. We assumed that sugar-sweetened beverages have an energy density of 1800 kilojoules (kJ) per litre.13 Reduction in consumption and energy intake was converted into change in body weight using an energy balance equation which stated that a daily energy change of 94 kJ was associated with a change of 1 kg in body weight for adults, assuming no change in physical activity.25 We used the change in body weight and average height of individuals in each age quintile category to obtain the change in BMI by age quintile (available in the data repository).21 BMI was modelled as lognormal distribution and a change in BMI will change the mean of the distribution.

Second, the changes in BMI were converted into incidence of type 2 diabetes mellitus, ischaemic heart disease and stroke using the potential impact fraction, defined as the “proportional reduction in the incidence of a certain disease, resulting from a specific change in distribution of a risk factor in the population at risk.”26 We obtained the baseline age-and sex-specific incidence, prevalence and case-fatality rates of the diseases from DisMod II software package (Department of Public Health, Erasmus University, Rotterdam, Netherlands). We used data on the relative risk of type 2 diabetes mellitus, ischaemic heart disease and stroke due to a unit increase in BMI from the Global Burden of Disease study27 and the change in BMI by age quintile category (from the first step) to derive the age-and sex-specific potential impact fraction estimates using the EpigearXL add-in for Microsoft Excel, version 14.0 (EpiGear International Pty Ltd, Brisbane, Australia). The baseline incidence rate was scaled by the potential impact fraction to obtain the incidence and mortality rate due to the intervention. The changes in the incidence and mortality rate after the intervention then form the inputs into the cohort life-tables. Using Erstaz add-in to Microsoft Excel version 14.0 (EpiGear International Pty Ltd, Brisbane, Australia) the population was simulated to 100 years of lifetime or death to estimate the...
reduction in disease incidence, premature deaths and health-care costs over a 20-year period 2018–2038.

Health expenditure

We calculated the reduction in health expenditure associated with the reduction in disease incidence for both the households and the government. The Philippines Health Insurance Corporation (PhilHealth), a parastatal organization that operates the national health insurance scheme, provided the case rate for type 2 diabetes mellitus-related hospital admissions (International statistical classification of diseases and related health problems,\(^{28}\) ICD codes: E11.0, E11.1, E11.5 and E11.6), ischaemic heart disease (ICD code: I25) and stroke (ICD codes: I60, I61, I62, I63, I66, I67.4). The mean annual costs for these three admissions were 12 424 Philippine pesos, 10 468 Philippine pesos and 30 302 Philippine pesos, respectively. Due to lack of detailed age-, sex- and sector-specific costs in the PhilHealth database, we assumed that the mean cost applied uniformly across all age groups.

To estimate out-of-pocket payments by patients and government expenditure through subsidies to patients, we apportioned the health-care costs in each income quintile by the level of government financing and co-payment under insurance for each quintile. Health insurance is largely provided by PhilHealth and out-of-pocket payments are determined by age, employment and income. Out-of-pocket payments form a major proportion of health care financing in the Philippines, and attempts have been made to address this, especially for the lowest income quintiles. As a result, the bottom quintile only pays 23% of their health-care costs out-of-pocket, whereas the highest quintile pays up to 83% of the costs. Government share of financing health-care costs also varies by income quintiles and while government provides 67% of financing for the lowest income quintile, its share of financing drops to only 8% for the highest income quintile.\(^{29}\) Using this estimate of out-of-pocket payments and government financing as a proportion of health-care costs, we estimated the reduction in out-of-pocket payments and government expenditure for each averted case of type 2 diabetes mellitus, ischaemic heart disease and stroke.

Financial risk protection

For financial risk protection, we estimated catastrophic health expenditure (disease expenditure exceeding 10% of total yearly household expenditure) and the number of individuals avoiding disease-related catastrophic health expenditure after implementation of the sugar tax.\(^{30}\)
Additional tax revenues
We estimated the total change in tax revenue due to the sugar tax, and calculated the proportion of this change borne by each income quintile. We used sugar-sweetened beverage consumption at baseline and the mean price (45 Philippine pesos) of a litre of sugar-sweetened beverages to calculate the post-policy tax revenue.

Data sources
We obtained the total population by age and sex, and income quintile for 2013 from the Philippines Statistics Authority and the distribution by income quintile from the Philippines Demographic and Health Survey 2013. We obtained the BMI, the mean height of the population and sugar-sweetened beverages consumption by age, sex and income quintile from the Philippines National Nutrition Survey 2013. The baseline characteristics and the inputs are shown in Box 1.

Sensitivity analysis
We conducted three univariate sensitivity analyses. First, we reduced the pass-through effect from 100% to 50%. Second, we increased the pass-through effect to 150%. The pass-through effect could vary substantially across countries, across retailers within the country and across time. A study in the United States showed that retail prices of sugar-sweetened beverages in areas where a tax was implemented increased by 61% in the first month followed by 93% in the second month. Third, we used a uniform price elasticity measure across all income quintiles by applying a mean price elasticity of \(-1.166\) across all income quintiles. We obtained this figure by calculating a simple average of elasticity values across the five income quintiles from Mexico (available in the data repository). This helped us to see the health effect due to differences in consumption and risk factors at baseline and on health-care costs due to differences in subsidy levels across the income quintiles.

Results
We present the results by income quintile on the number of premature deaths due to type 2 diabetes mellitus, ischaemic heart disease and stroke; the reduction in out-of-pocket payments; the additional tax revenue generated; and the financial risk protection obtained. The estimates for health-care costs and tax revenues are in nominal terms, meaning that they do not account for price inflation. We also did not apply a discount rate to convert future costs into present value.
Fig. 1 shows the number of premature deaths averted due to the new tax, projected over 20 years. We estimated that 5913 type 2 diabetes mellitus-related deaths, 10,339 ischaemic heart disease-related deaths and 7950 stroke-related deaths could be averted. The impact was more pronounced in the fourth and fifth income quintiles of the population, with around half of the overall deaths averted in these two quintiles. The smallest effect, with around 10% of overall deaths averted, was among the lowest quintile, who had relatively lower consumption of sugar-sweetened beverages at baseline.

We projected a reduction of 31.6 billion Philippine pesos (US$ 627 million) in healthcare costs over the 20-year period (Table 1) and a total out-of-pocket cost savings of 18.6 billion Philippine pesos (US$ 369 million) over the same period (Table 2). Given the unequal distribution of out-of-pocket payments across quintiles, the highest income quintile could save the most (6.4 billion Philippine pesos; 35% of total out-of-pocket savings) while the lowest income quintile could save the least (0.6 billion Philippine pesos; 3% of total out-of-pocket savings; Fig. 2).

Projected government contributions to health-care costs also differed across income quintiles. Due to progressive policy, government expenditure on health (government schemes and compulsory contributory health-care financing schemes) contributed to 67% (37,403 of 55,557 Philippine pesos) of health-care costs in the lowest quintile and 8% (16,117 of 190,521 Philippine pesos) for the highest quintile, with an overall contribution of 28% (130,028 of 465,241 Philippine pesos) across the quintiles (Table 2). This distribution of funding across quintiles is reflected in the distribution of savings across quintiles, as the sugar tax could contribute to 10 billion Philippine pesos (US$ 198 million) in savings over 20 years and 57% (3.1 billion + 2.6 billion Philippine pesos) of these savings could be from quintiles 2 and 3 (Fig. 3).

In addition, we estimated that there could be a net increase in annual tax revenues, with the government receiving an additional 41.0 billion Philippine pesos per annum (0.26% of the 2015 nominal gross domestic product of 15,806.4 billion Philippine pesos). Fig. 4 shows that the lowest income quintile could bear the smallest proportion (14%, 5.6 billion Philippine pesos) of this increase in tax burden while the highest income quintile could bear the largest share (26%, 10.5 billion Philippine pesos).
To measure financial risk protection, we estimated that the tax could avert 13,890 cases of catastrophic health expenditure.

Sensitivity analysis

When we reduced the pass-through effect to the lower bound of 50%, we observed changes in effects in both absolute terms and in the distribution across income quintiles. First, we estimated that the number of type 2 diabetes mellitus-related premature deaths averted over 20 years could be reduced to 3091 (a reduction of 47%), while ischaemic heart disease and stroke-related deaths decline to 5574 (46% reduction) and 4280 (46% reduction), respectively (Table 2). In contrast to the reduction in premature deaths, we projected an increase in tax revenues to 44.7 billion Philippine pesos. Lastly, we estimated that 7483 cases of catastrophic health expenditure would be averted (an 46% reduction).

Applying a price elasticity of -1.166 across all income quintiles we projected that the proportion of overall type 2 diabetes mellitus deaths averted for quintile 5 could increase to 30% (1811 of 6056 deaths) from 26% (1532 of 5913 deaths) in the baseline scenario (Table 3). A similar pattern was observed for stroke and ischaemic heart disease-related deaths, and the shift occurred from quintile 2 to quintile 5. The total tax revenue and distribution of its burden across income quintiles was roughly similar to the baseline scenario.

Discussion

Our analysis showed that an excise tax of around 13% on sugar-sweetened beverages in the Philippines may generate population-level health gains. We demonstrated that the wealthiest quintiles will be most affected by the tax. This differs from a recent study in Mexico that demonstrated that the reductions in consumption were higher among the lower socioeconomic status group (10%) than among the high socioeconomic status group (6%)31,32 and the maximum reduction in BMI was obtained in the lowest levels of socioeconomic status. 33 Similarly, in Australia, it was estimated that a 20% tax would lead to almost 50% of the gains within the lowest income quintiles. 15 While the findings from our study differ from those studies, as to which segment of the population benefits, they all illustrate that improvements can be made in health-care promotion through taxation.

This analysis of the relative impact of such a tax illustrates the power of regulation of sugar consumption in the studied contexts. On the one hand, sugar plays a powerful role in
fuelling the obesity burden and related health conditions. On the other hand, regulating sugar proves to be an effective tool for curbing consumption, and importantly this tax does not appear to function as a regressive imposition on the poor. In fact, the tax evaluated in this study reflects pro-poor health financing in the Philippines. As such, the tax burden would progressively increase, with the bottom two income quintiles bearing about 30% of the tax burden. This is especially important in low- and middle-income countries, where noncommunicable diseases are rising.³⁴

Therefore, our research contributes timely evidence to suggest that sugar-sweetened beverage taxes are not universally regressive and can be compatible with health-system goals that include the progressive attainment of universal health coverage. Our findings suggest that distributional benefits of these taxes reflect not only a country’s underlying level of domestic consumption, but also the degree to which the health system has installed measures of financial protection for low-income households. Furthermore, sugar-sweetened beverage taxes are a way for countries to raise revenues, a hard-to-achieve policy priority of low- and middle-income countries’ health systems.

Taxing sugar-sweetened beverages is a political undertaking. Taxation policy development involves cooperation among an array of influential actors who have different interests. Many countries combatting the growing threat of noncommunicable diseases also benefit economically through domestic sugar production, consumption and international trade. These forces are historical, socially contingent and often path-dependent as they are tied to the political trajectories of decision-makers, including elected officials. Nevertheless, in this new area of research, we still do not know enough about how industry and the government can work together to strengthen the health and well-being of citizens.³⁵ Of all the policy interventions to curb consumption of harmful products, from marketing restrictions to warning labels and manufacturing regulations, taxing sugar-sweetened beverages may prove to be the most useful at present. Some countries are experimenting with tax structures to incentivize reformulation of sugar-sweetened drinks³⁶ and the possibility of taxation may even facilitate self-regulation by the beverage industry.³⁷

Early evidence suggests that health advocates need to remain vigilant to ensure that sugar-sweetened beverage taxes endure. In the United States, a tax in Cook County (which includes the metropolitan area of Chicago) was repealed after two months.³⁸
manufacturers undermined Berkeley, California’s sugar-sweetened beverage tax by passing a pre-emptive state-wide ban on other local sugar-sweetened beverage taxes. Borrowing tactics from tobacco and alcohol, the food and beverage industry in Mexico continues its efforts to counteract the Mexican sugar-sweetened beverage tax in several ways. All indications are that the sugar-sweetened beverage tax in the Philippines will face similar challenges. For example, an influential sugar-sweetened beverage manufacturer in the Philippines announced layoffs of employees only weeks after passage of the new tax. Similarly, an international producer of sugary powder mixes has threatened to relocate its manufacturing business elsewhere in response to the Philippines tax. These examples underscore the importance of using sound evidence to provide arguments in support of sugar-sweetened beverage taxation and its role in reducing noncommunicable diseases.

Our study has several limitations. First, we did not have direct estimates of the price elasticity of sugar-sweetened beverage consumption by income quintile for the Philippines. Instead, we used estimates from Mexico because the countries are similar in important ways, such as their tropical geographical locations that underpins food-chains, shared colonial legacy that affects culture, diet and language, and common trade partners that influence dietary patterns. Second, we did not have cross-price elasticity estimates for substitutes such as milk and fruit juices. We do not expect that individuals would switch to non-caloric drinks such as water but would likely switch to other untaxed drinks. Third, we did not include the 12 Philippine pesos per litre tax on sugar-sweetened beverages made with high-fructose corn syrup because we did not have access to data on the composition of all sugar-sweetened beverages available in the Philippines. The two-tiered tax structure may encourage product reformulation, which our model is unable to accommodate. Fourth, we did not have data on variations in health-care use by income quintile and disease condition and we assumed 100% utilization of health-care facilities by those with any disease condition. Fifth, due to lack of data on costs in primary-care setting we used health-care costs associated with inpatient settings, whereas for several noncommunicable diseases, the care could be, and often is, managed in primary-care settings. Lastly, we did not consider non-medical costs such as loss of productivity, transportation costs and caregiver costs.

This study contributes to the growing base of evidence to suggest that sugar-sweetened beverage taxation can be a cost–effective means of addressing the growing threat of noncommunicable disease in low- and middle-income countries. Yet there remains a need for
empirical research from the Philippines and elsewhere to understand the impact of new sugar-
sweetened beverage taxes on different income groups after implementation. How this evidence is
used to inform debate in the Philippines and in other countries is political and difficult to predict.
Nevertheless, we argue that methods such as extended cost–effectiveness analysis can help
inform the discourse on health-system strengthening and its role in poverty alleviation globally.

Acknowledgements
This study was made possible by the United States Agency for International Development
(USAID) through its financial support for the Health Finance and Governance Project. We thank
Andrea Feigl, Sharon Nakhimovsky, Laurel Hatt, Stéphane Verguet, Charmaine A Duante, Glen
Melvin P Gironella and Eldridge Ferrer.

Funding:
This work was funded by USAID through the Health Finance and Governance Project [AID-
OAA-A-12-00080].

Competing interests:
Authors AS, ADK, LLR, and BJ declare no competing interests. Authors IAA, CAD, and MC
are employed by the Food and Nutrition Research Institute (FNRI) within the Philippines
Department of Science and Technology. As such, they have advocated for the sugar-sweetened
beverages tax before its passage and FNRI may benefit from revenue generated by the new tax.

References
1. Hu FB. Resolved: there is sufficient scientific evidence that decreasing sugar-
sweetened beverage consumption will reduce the prevalence of obesity and

2. Malik VS, Pan A, Willett WC, Hu FB. Sugar-sweetened beverages and weight gain in

3. Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar-sweetened beverages,
obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation.

4. Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages and weight
https://doi.org/10.1093/ajcn/84.2.274 PMID:16895873

diabetes prevalence: an econometric analysis of repeated cross-sectional data.

31. Colchero MA, Popkin BM, Rivera JA, Ng SW. Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study. BMJ. 2016 01 6;352:h6704. https://doi.org/10.1136/bmj.h6704 PMID:26738745

Box 1. Input parameters used in the extended cost–effectiveness analysis of the sugar-sweetened beverages tax in the Philippines

Size of population

98.2 billion (Philippines Statistics Authority, 2013).

Daily consumption of sugar-sweetened beverages, by income quintile

Quintile 1 (poorest): 0.13 L; quintile 2: 0.18 L; quintile 3: 0.21 L; quintile 4: 0.26 L; quintile 5 (richest): 0.29 L (National Nutrition Survey, 2013).

Average proportion of health-care costs as out-of-pocket payments, by income quintile

Quintile 1: 20% (Philippine pesos 424/2093); quintile 2: 37% (Philippine pesos 932/2528); quintile 3: 52% (Philippine pesos 1741/3358); quintile 4: 71% (Philippine pesos 4211/5945); quintile 5: 83% (Philippine pesos 11640/14007; Philippines National Health Account, 2013 as cited in Racelis at al.).29

Income per capita quintiles

Gross domestic product (nominal price)

15 806.4 billion Philippine pesos (Philippines Statistics Authority, 2015).

US$: United States dollars.
Table 1. **Summary findings for the extended cost–effectiveness analysis of the sugar-sweetened beverages tax in the Philippines**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of diabetes mellitus incident cases averted</td>
<td>299,540</td>
<td>28,917</td>
<td>55,289</td>
<td>66,045</td>
<td>76,960</td>
<td>72,329</td>
</tr>
<tr>
<td>No. of diabetes mellitus deaths averted over 20 years</td>
<td>5,913</td>
<td>522</td>
<td>1,006</td>
<td>1,321</td>
<td>1,532</td>
<td>1,532</td>
</tr>
<tr>
<td>No. of ischaemic heart disease incident cases averted</td>
<td>40,882</td>
<td>3,594</td>
<td>7,149</td>
<td>8,881</td>
<td>10,280</td>
<td>10,978</td>
</tr>
<tr>
<td>No. of ischaemic heart disease deaths averted over 20 years</td>
<td>10,339</td>
<td>908</td>
<td>1,794</td>
<td>2,259</td>
<td>2,616</td>
<td>2,762</td>
</tr>
<tr>
<td>No. of stroke incident cases averted</td>
<td>19,858</td>
<td>1,768</td>
<td>3,454</td>
<td>4,302</td>
<td>5,013</td>
<td>5,321</td>
</tr>
<tr>
<td>No. of stroke deaths averted over 20 years</td>
<td>7,950</td>
<td>705</td>
<td>1,387</td>
<td>1,732</td>
<td>2,022</td>
<td>2,104</td>
</tr>
<tr>
<td>Total health-care savings(^a) over 20 years, billion Philippine pesos</td>
<td>31.6</td>
<td>3.0</td>
<td>5.7</td>
<td>6.9</td>
<td>8.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Total reduction in out-of-pocket payments over 20 years, billion Philippine pesos</td>
<td>18.6</td>
<td>0.6</td>
<td>2.1</td>
<td>3.6</td>
<td>5.8</td>
<td>6.4</td>
</tr>
<tr>
<td>Changes in annual tax revenues, billion Philippine pesos</td>
<td>41.0</td>
<td>5.6</td>
<td>7.0</td>
<td>8.0</td>
<td>9.9</td>
<td>10.5</td>
</tr>
<tr>
<td>No. of cases of catastrophic expenditure averted</td>
<td>13,890</td>
<td>8,269</td>
<td>1,953</td>
<td>2,184</td>
<td>1,484</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\) Total health-care savings include savings on government costs and patients' out-of-pocket payments.

Notes: The estimates for health-care costs and tax revenues do not account for discounting and are in nominal terms. From January 2018 the tax on sugar-sweetened beverages was levied at 6 Philippine pesos per litre (United States dollars: 0.12). We projected effects over the 20-year period 2018–2038.
Table 2. Summary findings for the sensitivity analysis of the pass-through effect for the extended cost–effectiveness analysis of the sugar-sweetened beverages tax in the Philippines

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass-through effect reduced to 50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of diabetes mellitus incident cases averted</td>
<td>164162</td>
<td>15729</td>
<td>30294</td>
<td>36305</td>
<td>42153</td>
<td>39681</td>
</tr>
<tr>
<td>No. of diabetes mellitus deaths averted over 20 years</td>
<td>3091</td>
<td>251</td>
<td>514</td>
<td>702</td>
<td>814</td>
<td>810</td>
</tr>
<tr>
<td>No. of ischaemic heart disease incident cases averted</td>
<td>22037</td>
<td>1934</td>
<td>3887</td>
<td>4801</td>
<td>5522</td>
<td>5893</td>
</tr>
<tr>
<td>No. of ischaemic heart disease deaths averted over 20 years</td>
<td>5574</td>
<td>488</td>
<td>976</td>
<td>1221</td>
<td>1405</td>
<td>1484</td>
</tr>
<tr>
<td>No. of stroke incident cases averted</td>
<td>10691</td>
<td>949</td>
<td>1873</td>
<td>2311</td>
<td>2712</td>
<td>2846</td>
</tr>
<tr>
<td>No. of stroke deaths averted over 20 years</td>
<td>4280</td>
<td>378</td>
<td>752</td>
<td>930</td>
<td>1094</td>
<td>1126</td>
</tr>
<tr>
<td>Total health-care cost savings* over 20 years, billion</td>
<td>17.3</td>
<td>1.6</td>
<td>3.1</td>
<td>3.8</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Philippine pesos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total reduction in out-of-pocket payments over 20 years,</td>
<td>10.2</td>
<td>0.3</td>
<td>1.2</td>
<td>2.0</td>
<td>3.2</td>
<td>3.5</td>
</tr>
<tr>
<td>billion Philippine pesos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes in annual tax revenues, billion</td>
<td>44.7</td>
<td>6.1</td>
<td>7.8</td>
<td>8.8</td>
<td>10.7</td>
<td>11.3</td>
</tr>
<tr>
<td>Philippine pesos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of cases of catastrophic expenditure averted</td>
<td>7483</td>
<td>4490</td>
<td>1048</td>
<td>1124</td>
<td>821</td>
<td>0</td>
</tr>
<tr>
<td>Pass-through effect increased to 150%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of diabetes mellitus incident cases averted</td>
<td>410108</td>
<td>40156</td>
<td>75161</td>
<td>89891</td>
<td>104876</td>
<td>100024</td>
</tr>
<tr>
<td>No. of diabetes mellitus deaths averted over 20 years</td>
<td>8225</td>
<td>759</td>
<td>1401</td>
<td>1819</td>
<td>2106</td>
<td>2140</td>
</tr>
<tr>
<td>No. of ischaemic heart disease incident cases averted</td>
<td>57185</td>
<td>5030</td>
<td>9912</td>
<td>12389</td>
<td>14371</td>
<td>15483</td>
</tr>
<tr>
<td>No. of ischaemic heart disease deaths averted over 20 years</td>
<td>14466</td>
<td>1277</td>
<td>2486</td>
<td>3150</td>
<td>3657</td>
<td>3896</td>
</tr>
<tr>
<td>No. of stroke incident cases averted</td>
<td>27819</td>
<td>2499</td>
<td>4802</td>
<td>5990</td>
<td>7043</td>
<td>7485</td>
</tr>
<tr>
<td>No. of stroke deaths averted over 20 years</td>
<td>11137</td>
<td>997</td>
<td>1927</td>
<td>2410</td>
<td>2842</td>
<td>2961</td>
</tr>
<tr>
<td>Total health-care cost savings* over 20 years, billion</td>
<td>43.3</td>
<td>4.2</td>
<td>7.8</td>
<td>9.4</td>
<td>11.2</td>
<td>10.7</td>
</tr>
<tr>
<td>Philippine pesos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total reduction in out-of-pocket payments over 20 years,</td>
<td>25.5</td>
<td>0.8</td>
<td>2.9</td>
<td>4.9</td>
<td>7.9</td>
<td>8.9</td>
</tr>
<tr>
<td>billion Philippine pesos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes in annual tax revenues, billion</td>
<td>37.3</td>
<td>5.1</td>
<td>6.2</td>
<td>7.2</td>
<td>9.0</td>
<td>9.7</td>
</tr>
<tr>
<td>Philippine pesos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of cases of catastrophic expenditure averted</td>
<td>19202</td>
<td>11513</td>
<td>2667</td>
<td>2974</td>
<td>2048</td>
<td>0</td>
</tr>
</tbody>
</table>

* Total health-care savings include savings on government costs and patients’ out-of-pocket payments.

Notes: The estimates for health care costs and tax revenues do not account for discounting and are in nominal terms. From January 2018, the tax on sugar-sweetened beverages was levied at 6 Philippine pesos per litre (United States dollars: 0.12). We projected effects over the 20-year period 2018–2038. Pass-through rate determines how much of the increase in tax is passed to consumers as an increase in retail prices instead of being absorbed or paid by distributors or manufacturers. Due to rounding, percentages may not total 100%.
Table 3. **Summary findings for the sensitivity analysis for elasticity for the extended cost–effectiveness analysis of the sugar-sweetened beverages tax in the Philippines, 2018–2038**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean elasticity of (-1.166) applied across quintiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of diabetes mellitus incident cases averted</td>
<td>305 269</td>
<td>29 946</td>
<td>46 495</td>
<td>62 377</td>
<td>81 316</td>
<td>85 135</td>
</tr>
<tr>
<td>No. of diabetes mellitus deaths averted over 20 years</td>
<td>6 056</td>
<td>546</td>
<td>835</td>
<td>1 244</td>
<td>1 620</td>
<td>1 811</td>
</tr>
<tr>
<td>No. of ischaemic heart disease incident cases averted</td>
<td>42 087</td>
<td>3717</td>
<td>6 018</td>
<td>8396</td>
<td>10 932</td>
<td>13 024</td>
</tr>
<tr>
<td>No. of ischaemic heart disease deaths averted over 20 years</td>
<td>10 646</td>
<td>940</td>
<td>1 510</td>
<td>2 135</td>
<td>2 782</td>
<td>3 279</td>
</tr>
<tr>
<td>No. of stroke incident cases averted</td>
<td>20 427</td>
<td>1833</td>
<td>2 911</td>
<td>4 037</td>
<td>5 352</td>
<td>6 294</td>
</tr>
<tr>
<td>No. of stroke deaths averted over 20 years</td>
<td>8 172</td>
<td>731</td>
<td>1 167</td>
<td>1 624</td>
<td>2 160</td>
<td>2 490</td>
</tr>
<tr>
<td>Total health-care cost savings over 20 years, billion Philippine pesos(^a)</td>
<td>32.2</td>
<td>3.1</td>
<td>4.8</td>
<td>6.5</td>
<td>8.7</td>
<td>9.1</td>
</tr>
<tr>
<td>Total reduction in out-of-pocket payments over 20 years, billion Philippine pesos</td>
<td>19.5</td>
<td>0.6</td>
<td>1.8</td>
<td>3.4</td>
<td>6.1</td>
<td>7.6</td>
</tr>
<tr>
<td>Changes in annual tax revenues, billion Philippine pesos</td>
<td>40.9</td>
<td>5.6</td>
<td>7.3</td>
<td>8.1</td>
<td>9.7</td>
<td>10.2</td>
</tr>
<tr>
<td>No. of cases of catastrophic expenditure averted</td>
<td>13 826</td>
<td>8 556</td>
<td>1 632</td>
<td>2 011</td>
<td>1 627</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\) Total health-care savings include savings on government costs and patients’ out-of-pocket payments.

Notes: The estimates for health care costs and tax revenues do not account for discounting and are in nominal terms. From January 2018 the tax on sugar-sweetened beverages was levied at 6 Philippine pesos per litre (United States dollars: 0.12). We projected effects over the 20-year period 2018–2038. Own price elasticity of demand of a good is the change in quantity demanded of the good in response to a change in its own price. We obtained the mean elasticity of \(-1.166\) by calculating a simple average of elasticity values across the five income quintiles from Mexico (\(-1.12\) in Q1, \(-1.41\) in Q2, \(-1.24\) in Q3, \(-1.09\) in Q4, \(-0.97\) in Q5 (available in the data repository).\(^2\)
Fig. 1. **Projected potential deaths averted due to diabetes mellitus, ischaemic heart disease and stroke after implementation of the sugar-sweetened beverages tax in the Philippines, 2018–2038**

Notes: Q1: lowest income quintile, Q5: highest income quintile. From January 2018 the tax on sugar-sweetened beverages was levied at 6 Philippine pesos per litre (United States dollars: 0.12).
Fig. 2. **Projected reduction of out-of-pocket health-care payments by income quintile after implementation of the sugar-sweetened beverages tax in the Philippines, 2018–2038**

![Bar chart showing projected reduction of out-of-pocket health-care payments by income quintile.](image)

Notes: Q1: lowest income quintile, Q5: highest income quintile. From January 2018 the tax on sugar-sweetened beverages was levied at 6 Philippine pesos per litre (United States dollars: 0.12).
Fig. 3. **Projected reduction of government health-care costs by income quintile after implementation of the sugar-sweetened beverages tax in the Philippines, 2018–2038**

Notes: Q1: lowest income quintile, Q5: highest income quintile. From January 2018 the tax on sugar-sweetened beverages was levied at 6 Philippine pesos per litre (United States dollars: 0.12).
Fig. 4. Projected annual revenues from the sugar-sweetened beverages tax by income quintile in the Philippines, per annum, 2018–2038

Revenues from sugar-sweetened beverages tax, PHP billion

<table>
<thead>
<tr>
<th>Income quintile (from poorest to richest)</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues from sugar-sweetened beverages tax, PHP billion</td>
<td>5.0</td>
<td>6.5</td>
<td>7.0</td>
<td>9.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

PHP: Philippine pesos.

Notes: Q1: lowest income quintile, Q5: highest income quintile. From January 2018 the tax on sugar-sweetened beverages was levied at 6 Philippine pesos per litre (United States dollars: 0.12).