Technical consultation on the spread of *Anopheles stephensi*

Malaria Policy Advisory Committee Meeting
Geneva, Switzerland
2 – 4 OCTOBER 2019
Anopheles stephensi

- three ecological variants; type, intermediate and mysorensis
- ‘type’ form is an efficient urban malaria vector in India due to its anthropophilic nature and adaptation to man-made breeding sites
- ‘type’ and ‘intermediate’ forms have also emerged as efficient vectors in rural areas of India as a result of changing agricultural and water storage practices
- quickly adapt to the local environment & withstands high temperatures
- an efficient urban malaria vector for both Plasmodium falciparum and P. vivax
- until 2011, the reported distribution was confined to certain countries in South-East Asia and large parts of the Arabian Peninsula
An. stephensi breeding sites (Ethiopia)
Why hold a technical consultation?

First record of the Asian malaria vector *Anopheles stephensi* and its possible role in the re-emergence of malaria in the Middle East.

Michael K. Faulde, A. Yasi, H. T. R. Kandasamy Aravindan, G. Gayan Dharmasiri

DOI: 10.1111/1223-3203.10772

CASE REPORT

First record of *Anopheles stephensi* in Sri Lanka: a potential role of malaria reinfection.

A. G. Gayan Dharmasiri, A. Yasi, H. T. R. Kandasamy Aravindan

First detection of *Anopheles stephensi* Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches.

Tamar E. Carter, Solomon Yared, Araya Gebreslassie, Victoria Bonnell, Lembodhar Damodaran, Karen Lopez, Mohammed Ibrahim, Seid Mohammed, Daniel Janies

Global Malaria Programme

World Health Organization
Technical Consultation Objectives (1)

• Review published and unpublished evidence on the presence of *An. stephensi* outside of its traditional geographic range;

• Review efforts to model potential areas at risk for *An. stephensi* introduction and assess – to the extent feasible – the potential risk for further spread beyond the vector’s previously reported geographic range;

• Review knowledge on *An. stephensi*’s bionomics and biology, and analyse differences between vector populations in Asia and Africa to identify suitable control practices for each area where the vector is present;
• Review countries’ experiences of controlling *An. stephensi* where it has been traditionally present, with the aim of identifying best practices and the main challenges in the control of this species;

• Review the status of *An. stephensi* resistance to different insecticide classes;

• Recommend surveillance and control strategies to address the threat posed by the spread of *An. stephensi* and surveillance indicators to assess the impact of control interventions.
Broad Participation

Chair
Kezia Malm
NMCP
Ghana

Participants
Tamar Carter
Baylor University
USA

Mike Reddy
Microsoft Research
Seattle
USA

Marianne Sinka
University of Oxford
United Kingdom

Temporary Advisers
Jude Bigoga
University of Yaoundé
Cameroon

Ahmadali Enayati
Mazandaran University of Medical Sciences Sari
Iran

Marco Seyfarth
Bundeswehr Medical Services
Germany

Mohamed Abdi Ali
NMCP
Djibouti

Maureen COETZEE
WITS Research Institute for Malaria
South Africa

Michael Faulde
University Clinics Bonn
Germany

Fitsum Tadesse
Armauer Hansen Research Institute, Ethiopia

Abdoul-ilah A. Abdi
Counsellor to the President of Djibouti
Djibouti

Nelson Cuamba
Adviser for NMCP of Mozambique

Kevin Gorman
Oxitec Limited
UK

S. N. Surendran
University of Jaffna
Sri Lanka

Manonath Marasinghe
Anti-Malaria Campaign
Sri Lanka

Krijn Paaijmans
Arizona State University
USA

Courtney Murdock
University of Georgia
USA

S. Y. Gebremeskel
Jigjiga University
Ethiopia

Mebrabthom H. Zeweli
Malaria focal point
Ethiopia

Naveen Rai Tuli
Municipal Corporation of Delhi
India

Laura Norris
BMGF
USA

D. Y. Gebre
Jimma University
Ethiopia

Meshesha B. Managido
PMI Vector Link
Ethiopia

Global Malaria Programme

World Health Organization
Conclusions

- *An. stephensi* has been spreading over the last decades
- Djibouti, Sri Lanka and Ethiopia were only the most recently affected countries
- Sudan has since joined the list (Ayman Ahmed, per. Com.)
- Further spread must be anticipated (or has already occurred)

Figure from Surendran *et al.* (2019) Anthropogenic Factors Driving Recent Range Expansion of the Malaria Vector *Anopheles stephensi*. Front. Public Health 7:53.
Conclusions

- Evidence of actual or potential for transmission of both *P. falciparum* and *P. vivax* in Djibouti and Ethiopia
- Experiences of controlling *An. stephensi* in Africa is limited or absent. Surveillance and control approaches should thus be based on best-practices from India until context specific experience has been developed.
- *An. stephensi* mosquitoes that invaded new geographical areas generally have a genetic background that confers resistance to multiple insecticide classes, posing potential control challenges. However, no data on susceptibility to pyrroles or neonicotinoids were reviewed.
- New tools for surveillance and control need development and evaluation, including – once available – a self-limiting *An. stephensi* gene-drive construct that aims to produce non-biting male mosquitoes to suppress local wild populations
- Model-based assessments of mosquito threats need further development, incl. on key variables and how to collect/incorporate these
Recommendations to WHO

• Develop a ‘Vector Alert’ document and post it online to urge WHO Member States and their implementing partners in and around the Horn of Africa, Sudan and the surrounding geographical areas, and Sri Lanka to take immediate action

• Action in three areas:
 • Surveillance (including updates to mosquito identification keys)
 • Intervention
 • Monitoring & evaluation

• Develop data reporting sheet

• Update Malaria Threats Map to illustrate current and new reports of *An. stephensi* distribution / invasion (allowing potential expansion to report other invasive anopheline species)
English & French versions online. Arabic undergoing layout.

Accompanied by data reporting form and new email account for data reporting.
What has happened since?

Malaria Threats Map

Tracking biological challenges to malaria control and elimination

VECTOR INSECTICIDE RESISTANCE
Resistance of malaria mosquitoes to insecticides used in core prevention tools of treated bed nets and indoor residual sprays threatens vector control effectiveness

PARASITE pfhrp2/3 GENE DELETIONS
Gene deletions among some malaria parasites cause false negative diagnostic test results, complicating case management and control

PARASITE DRUG EFFICACY AND RESISTANCE
Resistance of malaria parasites to artemisinin – the core compound of the best available antimalarial medicines – threatens antimalarial drug efficacy

INVASIVE VECTOR SPECIES
The spread of anopheline mosquito vector species and their establishment in ecosystems to which they are not native poses a potential threat to the control and elimination of malaria.
What has happened since?

Reporting new detections:
Form: https://www.who.int/docs/default-source/documents/publications/gmp/whogmp-invasive-species-reporting-form.xlsm?sfvrsn=8c82af32_21
Send to: vectorsurveillance@who.int

Global Malaria Programme
Further Information
