

35 SCHEDULE FOR THE ADOPTION PROCESS OF DOCUMENT QAS/21.873:
36
37 **ETHANOL, ANHYDROUS**
38
39 **(ETHANOLUM, ANHYDRICUM)**
40
41

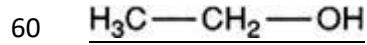
Description	Date
Monograph drafted based on the corresponding, internationally-harmonized text developed by the Pharmacopoeial Discussion Group.	December 2020
Draft monograph sent out for public consultation.	February – March 2021
Discussion at the Consultation on Screening Technologies, Laboratory Tools and Pharmacopoeial Specifications for Medicines	May 2021
Presentation to the 56 th WHO Expert Committee on Specifications for Pharmaceutical Preparations.	October 2021
Further follow-up action as required.	

42
43
44 *[Note from the Secretariat. It is proposed to revise the monograph on Ethanol in The
45 International Pharmacopoeia.*
46 *The revision is based on the corresponding, internationally-harmonized text developed by the
47 Pharmacopoeial Discussion Group (PDG). Editorial modifications have been made in order
48 to be in line with the style used in The International Pharmacopoeia.*
49 *Changes to the current chapter are indicated in the text by insert or delete.]*
50
51

52 **ETHANOL, ANHYDROUS (ETHANOLUM, ANHYDRICUM)**

53

54 *This monograph is based on the corresponding, internationally-harmonized text developed by*


55 *the Pharmacopoeial Discussion Group (PDG). Editorial modifications have been made in*

56 *order to be in line with the style used in The International Pharmacopoeia.*

57

58 **Graphic formula.**

59

61

62 **Molecular formula.** $\text{C}_2\text{H}_6\text{O}$

63

64 **Relative molecular mass.** 46.07

65

66 **Chemical name.** Ethyl alcohol; ethanol; CAS Reg. No. 64-17-5.

67

68 **Other name.** Absolute alcohol; dehydrated alcohol; anhydrous ethanol.

69

70 **Description.** A colourless, clear and mobile liquid.

71

72 **Miscibility.** Miscible with water.

73

74 **Category.** Solvent; antiseptic.

75

76 **Storage.** Anhydrous ethanol should be kept in a well-closed container and stored, whenever

77 possible, at a temperature between 8 and 15 °C.

78

79 **Additional information.** Anhydrous ethanol is flammable, burning with a blue smokeless

80 flame, and hygroscopic. Boiling point, about 79 °C.

81

82

83

84

85 **Requirements**

86

87 **Definition.** Anhydrous ethanol contains not less than 99.5% (V/V) of C₂H₆O, corresponding
88 to not less than 99.2% (m/m) of C₂H₆O, at 20 °C.

89

90 **Identity tests**

91

92 A. Determine the relative density d_{20}^{20} of the test substance as described under 1.3
93 *Determination of mass density, relative density and weight per millilitre.* The relative
94 density d_{20}^{20} is 0.790 to 0.793.

95

96 B. Carry out the test as described under 1.7 *Spectrophotometry in the infrared region.* The
97 infrared absorption spectrum of the test substance is concordant with the reference
98 spectrum of anhydrous ethanol.

99

100 **Clarity and colour of solution.** The test substance is clear when tested, as described under
101 1.18 *Clarity and degree of opalescence of liquids, [Note from the Secretariat. Chapter 1.18 is*
102 *currently under elaboration]* and colourless when compared with water R, as described under
103 1.11.2 *Degree of coloration of liquids, Method II.* Dilute 1.0 mL to 20 mL with water R. After
104 standing for 5 minutes, the dilution remains clear when compared with water R.

105

106 **Non-volatile residue.** Place 100 mL of the test substance in a porcelain dish and heat on a
107 water-bath until volatilized, dry the residue at 105 °C for 1 hour, and weigh; not more than 2.5
108 mg (25 ppm m/V).

109

110 **Acidity or alkalinity.** Add 20 mL of carbon-dioxide-free water R and 0.1 mL of
111 phenolphthalein solution TS to 20 mL of test substance; the solution is colourless. Add 0.1 mL
112 of carbonate-free sodium hydroxide (0.01 mol/L) VS; the solution is pink (30 ppm, expressed
113 as acetic acid).

114

115 **Absorbance.** Record the absorption spectrum (1.6) of the test substance in a cuvette or cell
116 with an optical pathlength of 50 mm cell against water R between 235 nm and 340 nm. The
117 absorbance at 240 nm is not more than 0.40, not more than 0.30 between 250 nm and 260 nm

118 and not more than 0.10 between 270 nm and 340 nm. The spectrum shows a steadily
119 descending curve with no observable peaks or shoulders.

120

121 **Volatile impurities.** Carry out the test, as described under *1.14.5 Gas chromatography.*

122

123 Use a fused-silica column (30 m × 0.32 mm) coated with a stationary phase of
124 cyanopropyl(3)phenyl(3)methyl(94)polysiloxane R (1.8 µm).

125

126 As a detector, use a flame ionization detector.

127

128 Use helium R as the carrier gas with a linear velocity of 35 cm/s. Use a split ratio of 1:20.

129

130 Maintain the temperature of the column at 40 °C for 12 minutes. Increase the temperature at a
131 rate of 10 °C per minute to 240 °C and then maintain it at this temperature for 10 minutes.

132 Maintain the temperatures of the injection port and that of the detector at 200 °C and 280 °C,
133 respectively.

134

135 Prepare the following six solutions: For solution (1), use the test substance. For solution (2),
136 add 150 µL of 4-methylpentan-2-ol R to 500.0 mL of the test substance. For solution (3), dilute
137 100 µL of anhydrous methanol R to 50.0 mL with the test substance. Dilute 5.0 mL of the
138 solution to 50.0 mL with the test substance. For solution (4), dilute 50 µL of anhydrous
139 methanol R and 50 µL of acetaldehyde R to 50.0 mL with the test substance. Dilute 100 µL of
140 the solution to 10.0 mL with the test substance. For solution (5), dilute 150 µL of acetal R to
141 50.0 mL with the test substance. Dilute 100 µL of the solution to 10.0 mL with the test
142 substance. For solution (6), dilute 100 µL of benzene R to 100.0 mL with the test substance.
143 Dilute 100 µL of the solution to 50.0 mL with the test substance.

144

145 Inject alternately 1 µL each of solutions (1), (2), (3), (4), (5) and (6) and record the
146 chromatograms.

147

148 The test is not valid unless the resolution between the peaks corresponding to acetaldehyde (the
149 first peak) and methanol (the second peak) in the chromatogram obtained with solution (4) is
150 at least 1.5.

151 Methanol (impurity F)

152

153 In the chromatogram obtained with solution (1), the area of any peak corresponding to
154 methanol is not greater than 0.5 times the area of the peak due to methanol in the chromatogram
155 obtained with solution (3) (200 ppm (V/V)).

156

157 Acetaldehyde (impurity B) and acetal (impurity A)

158

159 Calculate the sum of the contents of acetaldehyde and acetal in parts per million (V/V) using
160 the following expression:

161

$$162 \frac{10 \times A_E}{A_T - A_E} + \frac{30 \times C_E}{C_T - C_E} \times \frac{44.05}{118.2}$$

163

164 where

A_E area of any peak corresponding to acetaldehyde in the chromatogram
obtained with solution (1);

A_T area of the peak due to acetaldehyde in the chromatogram obtained with
solution (4);

C_E area of any peak corresponding to acetal in the chromatogram obtained
with solution (1);

C_T area of the peak due to acetal in the chromatogram obtained with
reference solution (5);

44.05 molecular mass of acetaldehyde;

118.2 molecular mass of acetal.

165

166 The sum of the contents is not greater than 10 ppm (V/V), expressed as acetaldehyde.

167

168 Benzene (impurity D)

169

170 Calculate the content of benzene in parts per million (V/V) using the following expression:

$$171 \frac{2B_E}{B_T - B_E}$$

172

173 where

B_E = area of any peak corresponding to benzene in the chromatogram obtained with solution (1);

B_T = area of the peak due to benzene in the chromatogram obtained with solution (6).

174

175 The content of benzene is not greater than 2 ppm (V/V).

176

177 If necessary, the identity of benzene can be confirmed using another suitable chromatographic
178 system (stationary phase with a different polarity).

179

180 Other volatile impurities

181

182 In the chromatogram obtained with solution (2), the sum of the areas of the peaks for any other
183 impurities is not greater than the area of the peak due to 4-methylpentan-2-ol (300 ppm).
184 Disregard any peak with an area less than 0.03 times than the area of the peak due to 4-
185 methylpentan-2-ol (9 ppm).

186

187 **Assay.** Calculate the mass density at 20 °C (ρ_{20}) of the test substance using the value for the
188 relative density d_{20}^{20} obtained in identity test A. Determine the % (V/V) of C_2H_6O using the
189 alcoholimetric table given in 1.3.2. **[Note from the Secretariat. Chapter 1.3.2 is currently**
190 **under revision. The revised version will include the mentioned alcoholimetric table]**

191

192 **Impurities**

193

194 **[Note from the Secretariat. The chemical structures will be added at a later stage.]**

195

196 A. 1,1-diethoxyethane (acetal)

197 B. acetaldehyde

198 C. propan-2-one (acetone)

199 D. benzene

200 E. cyclohexane
201 F. methanol
202 G. butan-2-one (methyl ethyl ketone)
203 H. 4-methylpentan-2-one (methyl isobutyl ketone)
204 I. propan-1-ol (propanol)
205 J. propan-2-ol (isopropyl alcohol)
206 K. butan-1-ol (butanol)
207 L. butan-2-ol
208 M. 2-methylpropan-1-ol (isobutanol)
209 N. furan-2-carbaldehyde (furfural)
210 O. 2-methylpropan-2-ol (1,1-dimethylethyl alcohol)
211 P. 2-methylbutan-2-ol
212 Q. pentan-2-ol
213 R. pentan-1-ol (pentanol)
214 S. hexan-1-ol (hexanol)
215 T. heptan-2-ol
216 U. hexan-2-ol
217 V. hexan-3-ol
218

219 **New reagents for the monographs on Anhydrous ethanol and Ethanol 96% (V/V)**

220

221 **Phenolphthalein solution TS**

222

223 *Procedure.* Dissolve 0.1 g of phenolphthalein R in 80 mL of ethanol (~750 g/L) TS and dilute
224 to 100 mL with water R.

225

226 *Test for sensitivity.* Add 0.1 mL of the phenolphthalein solution to 100 mL of carbon dioxide-
227 free water R; the solution is colourless. Not more than 0.2 mL of sodium hydroxide (0.02
228 mol/L) VS is required to change the colour to pink.

229

230 *Colour change.* pH 8.2 (colourless) to pH 10.0 (red).

231

232

233 **Cyanopropyl(3)phenyl(3)methyl(94)polysiloxane R**

234

235 Polysiloxane substituted with 3% cyanopropyl groups, 3% of phenyl groups and 94% of methyl
236 groups.

237

238 **4-Methylpentan-2-ol R**

239

240 4-Methyl-2-pentanol; C₆H₁₄O.

241

242 *Description.* Clear, colourless, volatile liquid.

243

244 *Refractive index.* n_D^{20} = about 1.411.

245

246 *Relative density.* d_4^{20} = about 0.802.

247

248 *Boiling point.* About 132 °C.

249

250 **Methanol, anhydrous R**

251

252 *Procedure.* Treat 1,000 mL of methanol R with 5 g of magnesium R. If necessary, initiate the
253 reaction by adding 0.1 mL of mercuric chloride (54 g/L) TS. When the evolution of gas has
254 ceased, distil the liquid and collect the distillate in a dry container protected from moisture.

255

256 *Water (2.8).* Not more than 0.3 g/L.

257

258

259 **Magnesium R**

260

261 Mg.

262

263 *Description.* Silver-white ribbon, turnings or wire, or a grey powder.

264

265

266 **Mercuric chloride (54 g/L) TS**

267

268 A solution of mercuric chloride R containing 54 g of HgCl₂ per litre.

269

270 **Acetal R**

271

272 Acetaldehyde diethyl acetal; 1,1-Diethoxyethane; C₆H₁₄O₂.

273

274 *Description.* Clear, colourless, volatile liquid.

275

276 *Miscibility.* Miscible with water and with ethanol (~750 g/L) TS.

277

278 *Refractive index.* n_D^{20} = about 1.382.

279

280 *Relative density.* d_{20}^{20} = about 0.824.

281

282 *Boiling point.* About 103 °C.

283

284 **Amendment to existing reagent entry**

285

286 Replace the existing entry for Benzene with the following:

287

288 **Benzene**

289

290 C₆H₆ (SRIP, 1963, p.48).

291

292 Where benzene is used to prepare a reference solution, for safety reasons, the pure reagent may
293 be replaced by a commercially available reference material containing a certified amount of
294 benzene.

295 **Ethanol (Ethanolum)**

296 H₃C—CH₂—OH

297 $\text{C}_2\text{H}_6\text{O}$

298 Relative molecular mass. 46.07

299 Chemical name. Ethyl alcohol; ethanol; CAS Reg. No. 64-17-5.

300 Other name. Absolute alcohol, dehydrated alcohol.

301 Description. A colourless, clear and mobile liquid; odour, characteristic.

302 Miscibility. Miscible with water and ether R.

303 Category. Solvent; antiseptic.

304 Storage. Ethanol should be kept in a well-closed container, and stored whenever possible
305 at a temperature between 8 and 15 °C.

306 Additional information. Ethanol is flammable, burning with a blue smokeless flame.

307 Hygroscopic. Boiling point, about 79 °C.

308 **Requirements**

309 Ethanol contains not less than 98.8% v/v and not more than the equivalent of 100.0% v/v
310 of $\text{C}_2\text{H}_6\text{O}$, corresponding to not less than 98.1% m/m and not more than the equivalent
311 of 100.0% m/m of $\text{C}_2\text{H}_6\text{O}$.

312 **Identity tests**

313 A. Place 0.25 mL in a small beaker, add 1 mL of potassium permanganate (10 g/l) TS
314 and 0.5 mL of sulfuric acid (0.5 mol/l) VS, and cover the beaker immediately with a
315 filter paper moistened with a recently prepared solution of 0.1 g of sodium nitroprusside
316 R and 0.5 g of piperazine hydrate R in 5 mL of water; a dark blue colour is produced on
317 the filter paper, that fades after a few minutes.

318 B. To a few drops add 1 mL of sulfuric acid (~1760 g/l) TS and a few drops of potassium
319 dichromate (100 g/l) TS; a green colour is produced and an odour of acetaldehyde is
320 perceptible.

321 ~~Relative density.~~ $d_{20}^{20} = 0.7904 - 0.7935$

322 ~~Non volatile residue.~~ Place 100 mL in a porcelain dish and heat on a water bath until
323 volatilized, dry the residue at 105 °C for 1 hour, and weigh; not more than 5 mg.

324 ~~Water insoluble substances.~~ Dilute a volume of Ethanol with an equal volume of water;
325 the mixture is clear and, after cooling to 10 °C, it remains clear for 30 minutes.

326 ~~Acidity.~~ Add 20 mL of carbon dioxide free water R and 3 drops of
327 phenolphthalein/ethanol TS to 20 mL of Ethanol; the colour remains unchanged. Titrate
328 with carbonate free sodium hydroxide (0.02 mol/l) VS; not more than 0.5 mL is required
329 to obtain the midpoint of the indicator (pink).

330 ~~Aldehydes and other foreign organic substances.~~ Thoroughly clean a glass stoppered
331 cylinder with hydrochloric acid (~250 g/l) TS, rinse with water and the Ethanol to be
332 examined. Place 20 mL of Ethanol in the cylinder. Cool the contents to about 15 °C and,
333 by means of a carefully cleaned pipette, add 0.1 mL of potassium permanganate (0.02
334 mol/l) VS, noting the time of the addition. Mix at once by inverting the stoppered
335 cylinder, and allow to stand at 15 °C for exactly 5 minutes; the pink colour does not
336 entirely disappear.

337 ~~Fusel oil and allied impurities.~~ Allow 25 mL to evaporate spontaneously from a porcelain
338 dish, carefully protected from dust, until the surface of the dish is barely moist; no foreign
339 odour is perceptible, and on the addition of a few drops of sulfuric acid (~1760 g/l) TS,
340 no red or brown colour develops.

341 ~~Methanol.~~ To 1 drop add 1 drop of water, 1 drop of phosphoric acid (~105 g/l) TS, and
342 2 drops of potassium permanganate (25 g/l) TS. Mix, allow to stand for 1 minute, and
343 add, drop by drop, sodium metabisulfite (50 g/l) TS until the permanganate colour is
344 discharged. If a brown colour remains, add 1 drop of phosphoric acid (~105 g/l) TS. To
345 the colourless solution add 5 mL of freshly prepared disodium chromotropate TS, and
346 heat on a water bath at 60 °C for 10 minutes; no violet colour appears.

347 ~~Benzene.~~ Record an absorption spectrum of the Ethanol in a 1-cm layer against water
348 between 220 nm and 350 nm. The absorbance at about 220 nm is not more than 0.30, at

349 about 230 nm not more than 0.18, at about 240 nm not more than 0.08, and at about 270
350 to 350 nm not more than 0.02. A curve drawn through these points is smooth.

351

352

* * *

Draft for comments