Introduction to water-related infectious diseases

Module 1.1
Overview

• The Protocol on Water and Health and requirements relating to water related disease surveillance and outbreak management

• International Health Regulations (IHR) core requirements:
 • Definition of water related infectious disease (WRID)
 • Pathogens transmitted through drinking-water
 • Drinking-water systems as a source of WRID
 • Burden of WRID in the European Region
 • The need to strengthen WRID surveillance and outbreak management capacity
Protocol on Water and Health

• Article 8:
 • Establish and maintain surveillance and early warning systems
 • Develop national and local contingency plans for responding to outbreaks, incidents and risks
 • Strengthen response capacity

• Article 6.2:
 • Establish and publish targets to reduce WRD outbreaks and incidents

• Article 13:
 • Strengthen transboundary cooperation on early-warning and response systems
IHR Core Capacity Requirements

<table>
<thead>
<tr>
<th>Core Capacity</th>
<th>Component</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveillance</td>
<td>Indicator-based surveillance</td>
<td>Early warning function for the early detection of a public health event</td>
</tr>
<tr>
<td></td>
<td>Event-based surveillance</td>
<td>Established and functioning</td>
</tr>
<tr>
<td>Response</td>
<td>Rapid response capacity</td>
<td>Public health emergency response mechanisms are established and functioning</td>
</tr>
<tr>
<td>Risk communication</td>
<td>Policy and procedures for public communication</td>
<td>Mechanisms for effective risk communication during a public health emergency are established and functioning</td>
</tr>
</tbody>
</table>

2030 Agenda for Sustainable Development

- **Ensure healthy lives and promote well-being for all at all ages**
 - **Target 3.3**: By 2030, (...) combat hepatitis, water-borne diseases and other communicable diseases
 - **Target 3.9**: By 2030, substantially reduce the number of deaths and illnesses from (...) water and soil pollution and contamination

- **Ensure availability and sustainable management of water and sanitation for all**
 - **Target 6.1**: By 2030, achieve universal and equitable access to safe and affordable drinking-water for all
 - **Target 6.2**: By 2030, achieve access to adequate and equitable sanitation and hygiene for all (...), paying special attention to the needs of women and girls (...)
Quiz

How are water-related infectious diseases transmitted?
What are water-related infectious diseases?

• Water-related disease
 • adverse effect on human health caused by the condition of water
 • Infectious or non-infectious

WRID may be transmitted via:

- the gastrointestinal tract, by ingestion of contaminated water (drinking or recreational water)
- the respiratory tract, by inhalation or aspiration of aerosols
- the skin, mucous membranes or eyes, by contact during recreational water use or bathing
Classification of WRID

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-borne</td>
<td>Ingestion of pathogens in contaminated water</td>
<td>Typhoid, legionellosis, poliomyelitis</td>
</tr>
<tr>
<td>Water-washed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Skin and eyes</td>
<td>Poor hygiene / lack of access to safe water</td>
<td>Scabies, trachoma, bacillary dysentery</td>
</tr>
<tr>
<td>b) Diarrhoeal diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Skin penetration</td>
<td>Infection by agents that spend part of their life-cycle in water</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>b) Ingested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-related vectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Biting near water</td>
<td>Spread by vectors that breed or bite near water</td>
<td>Malaria, West Nile Fever</td>
</tr>
<tr>
<td>b) Breeding in water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Primary agents of infectious waterborne outbreaks

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Viruses</th>
<th>Protozoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter jejuni</td>
<td>Hepatitis A virus</td>
<td>Balantidium coli</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Norovirus</td>
<td>Cryptosporidium spec.</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Rotavirus</td>
<td>Cyclospora cayetanensis</td>
</tr>
<tr>
<td>Legionella spec.</td>
<td>Adenovirus</td>
<td>Entamoeba histolytica</td>
</tr>
<tr>
<td>Leptospira spec.</td>
<td>Enterovirus</td>
<td>Giardia spec.</td>
</tr>
<tr>
<td>Mycobacterium spec.</td>
<td>Astrovirus</td>
<td>Naegleria fowleri</td>
</tr>
<tr>
<td>Salmonella enterica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shigella spec.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Pathogens transmitted through drinking-water

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Type species/genus/group</th>
<th>Health significance</th>
<th>Persistence in water supplies</th>
<th>Resistance to chlorine</th>
<th>Relative infectivity</th>
<th>Important animal source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkholderia</td>
<td>B. pseudomallei</td>
<td>High</td>
<td>May multiply</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>C. coli</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>C. jejuni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli -</td>
<td></td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Yes</td>
</tr>
<tr>
<td>diarrhoeagenic²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli - enterohaemorrhagic</td>
<td>E. coli O157</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Francisella</td>
<td>F. tularensis</td>
<td>High</td>
<td>Long</td>
<td>Moderate</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Legionella</td>
<td>L. pneumophila</td>
<td>High</td>
<td>May multiply</td>
<td>Low</td>
<td>Moderate</td>
<td>No</td>
</tr>
</tbody>
</table>
Campylobacter spp

- Important cause of acute gastroenteritis worldwide and in the European region.
- C. jejuni, C. coli, C. laridis and C. fetus
- Incubation period: 2-4 days; illness duration 3-7 days
- Symptoms: abdominal pain, diarrhoea (sometimes bloody), vomiting, chills and fever
- Reactive arthritis, meningitis and Guillain Barre syndrome
- Reservoir: Poultry, wild birds, cattle and pets.
- Waterborne outbreaks
 - Faecal contamination of water storage reservoirs with bird faeces
 - Consumption of inadequately treated surface water
Shigella

• *S. dysenteriae*, *S. flexneri*, *S. boydii* and *S. sonnei*.
• Abdominal cramps, fever and water diarrhoea; bacillary dysentery is characterized by bloody diarrhoea.
• Incubation period: 24-72 hours
• Faecal-oral transmission through person-to-person contact, contaminated food, water and flies
• Waterborne outbreaks are occurring more frequently due to faecally contaminated drinking-water.
• Control of Shigella in drinking-water is of special public health importance
• Sensitive to disinfection
Legionella

• *L. pneumophila* is responsible for most human infections: Legionellosis
 • Legionnaires’ disease
 • Pontiac fever

• Infection through inhalation of aerosols containing the bacteria (showers, jacuzzi, sinks and cooling towers etc.)

In rare cases transmitted by aspiration

• Risk management strategies in high-risk settings:
 • Temperature control (in cold water systems <20°C; in hot water systems >55°C)
 • Disinfection
 • Minimise biofilm growth
Hepatitis A virus

- Highly infectious with a low infectious dose
- Average incubation period 28-30 days
- Mostly asymptomatic, disease severity increases with age
- Hepatitis A / infectious hepatitis – sudden onset, fever, malaise, nausea, anorexia, abdominal pain, jaundice and liver damage – prolonged illness
- Mortality <1%
- Source: faecally contaminated food and water
- Person to person and faecal oral transmission most common
- Strong evidence of waterborne transmission
- Highly resistant to disinfection

E. coli or thermotolerant coliforms are not a reliable indicator of the presence/absence of HAV in drinking-water supplies.
Hepatitis E

• Much less widespread and mostly confined to tropical and subtropical areas. It has caused large waterborne outbreaks
 – Recent evidence indicates that HEV might also be prevalent at a low level in Europe.

• Infection can be more severe than HAV, increased mortality in pregnant women
Norovirus

- **90% of epidemic nonbacterial outbreaks** of gastroenteritis worldwide
- Usually self-limiting - severe illness is rare
- Transmission:
 - Faecally contaminated food or water
 - Person-to-person
 - Aerosolization of vomited virus and subsequent contamination of surfaces
- Outbreaks often occur in closed communities
 - Long-term care facilities, overnight camps, mass gatherings, hospitals, schools, prisons, dormitories and cruise ships
Cryptosporidium

- 13 species – C. hominis and C. parvum predominant in humans
- Self-limiting abdominal pain and diarrhea (1 week on average); can be prolonged and severe in immunosuppressed
- Large waterborne outbreaks, and outbreaks associated with visiting farms and contact with animals
- Oocysts shed in faeces can survive for weeks or months in fresh water
- Faecal oral and person to person transmission; consumption of contaminated food and water and transmission from animals.
- Highly infectious – 10 oocysts
- Resistant to disinfection
- E. coli or thermotolerant coliforms are not a reliable indicator of their presence/absence.
- UV radiation inactivates oocysts.
Giardia

- Giardiasis – G. intestinalis/G. lamblia or G. duodenalis
- Diarrhoea, abdominal cramps and malabsorption deficiencies
- Self-limiting illness, but prolonged illness can occur
- Asymptomatic carriage is common
- Cysts are shed in faeces; prolonged survival of cysts in fresh water
- Infectious dose <10 cysts
- Person to person transmission, contaminated drinking-water, recreational water and food
- Well established source of waterborne outbreaks
- Resistant to disinfection

E.coli or thermotolerant coliforms are not a reliable indicator of their presence/absence.
Drinking-water systems as a source of WRID

Hazardous events at different points of the water supply system

<table>
<thead>
<tr>
<th>Point of contamination</th>
<th>Examples of hazardous events</th>
</tr>
</thead>
</table>
| Source water (surface or groundwater) | • Runoff of animal and human waste and sewage during wet weather
 • Leakage of faecal matter from on-site sanitation or damaged sewers |
| Treatment system | • Inundation of filtration beds with contaminated water during flooding
 • Failures in treatment (e.g. coagulation, filtration and/or disinfection processes) |
| Distribution system | • Ingress of contaminated water from the environment through cracked or eroded pipes, especially during pressure drops
 • Cross-contamination of drinking-water systems with wastewater, rain water etc
 • Unhygienic conditions of containers carrying water from source to home |
| Storage system | • Faecal contamination of water stored in reservoirs and storage tanks |

The water treatment and distribution process

Source: https://interestingengineering.com/dirty-clean-how-water-treatment-plant-works
Drinking-water systems as cause of WRID outbreaks

Water safety plans

• Best way to ensure a safe drinking-water supply
• Identify hazards and events (e.g. technical defects, malpractices, accidents, natural causes) that pose a risk to the supply system or fail to remove them

• Multi-barriers to contamination
 – Preventing hazards entering to water system (catchment)
 – Removing hazards from the water (treatment)
 – Preventing re-occurrence (storage and distribution)
Burden of WRID in the European Region

• Estimated 2700 deaths due to WASH related diarrhoea in 2016 which indicates 7 people die every day (WHO, 2019)

• The diseases with the highest number of reported outbreaks are shigellosis, E. coli diarrhoea, hepatitis A and cryptosporidiosis*

• Available data do not allow to distinguish the transmission routes (water, sanitation or food)

• Under-reporting of outbreaks to insufficient surveillance and outbreak investigation capacity

*Global Infectious Disease and Epidemiology Online Network, data for 2010-2021 https://www.gideononline.com/
Waterborne outbreaks in Europe, 2000 - 2013

<table>
<thead>
<tr>
<th>Disease</th>
<th>Outbreaks linked to water</th>
<th>Number of outbreaks</th>
<th>Proportion linked to water (%)</th>
<th>Countries</th>
<th>Most common sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legionellosis</td>
<td>37</td>
<td>100</td>
<td>37</td>
<td>15</td>
<td>Drinking-water, water heater, cooling tower, spa</td>
</tr>
<tr>
<td>Gastroenteritis – viral</td>
<td>24</td>
<td>206</td>
<td>12</td>
<td>12</td>
<td>Drinking-water, swimming area, spa</td>
</tr>
<tr>
<td>Cryptosporidiosis</td>
<td>20</td>
<td>50</td>
<td>40</td>
<td>6</td>
<td>Drinking-water, swimming pool</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>18</td>
<td>155</td>
<td>12</td>
<td>8</td>
<td>Drinking-water, sauna</td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>14</td>
<td>45</td>
<td>31</td>
<td>11</td>
<td>Drinking-water</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>13</td>
<td>21</td>
<td>82</td>
<td>8</td>
<td>Drinking-water, outdoor recreational area</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>10</td>
<td>37</td>
<td>27</td>
<td>7</td>
<td>Drinking-water</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>9</td>
<td>64</td>
<td>14</td>
<td>8</td>
<td>Drinking-water, fountain</td>
</tr>
<tr>
<td>Typhoid and other enteric fever</td>
<td>9</td>
<td>38</td>
<td>24</td>
<td>4</td>
<td>Drinking-water</td>
</tr>
<tr>
<td>Tularemia</td>
<td>8</td>
<td>42</td>
<td>19</td>
<td>4</td>
<td>Drinking-water</td>
</tr>
<tr>
<td>E. coli diarrhea</td>
<td>5</td>
<td>100</td>
<td>5</td>
<td>4</td>
<td>Drinking-water, swimming pool</td>
</tr>
<tr>
<td>Giardiasis</td>
<td>5</td>
<td>14</td>
<td>36</td>
<td>5</td>
<td>Drinking-water</td>
</tr>
</tbody>
</table>

Global Infectious Disease and Epidemiology Online Network, https://www.gideononline.com/
Viral gastroenteritis

Example: Prague experienced large waterborne outbreak of norovirus infection (estimated 11,000 to 12,000 cases) caused by cross contamination resulting from breakages of water and sewage pipes (2015)

Number of people with vomit illness symptoms grows at 2018 Olympic Games

Rachel Axon | USA TODAY Sports
Published 9:27 p.m. UTC Feb 7, 2018

Norovirus sickens 39 in Spain with link to mussels

By Joseph James Whitworth
16-Apr-2018 - Last updated on 16-Apr-2018 at 11:44 GMT
Burden of mortality

• Burden of disease ≠ burden of mortality
 - the burden of disease caused by pathogens transmitted by the faecal oral route is greatest, BUT
 - the burden of mortality may be caused by pathogens transmitted by other routes is greatest

• Legionella, pseudomonas and non-tuberculous mycobacteria
 - Caused 91% of WRID deaths in the USA between 2003 and 2009

• Germany: >3 deaths every day due to legionellosis

Outbreaks of legionellosis in Europe, 2010 – 2021 (published data)

<table>
<thead>
<tr>
<th>Causes</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling tower</td>
<td>29</td>
</tr>
<tr>
<td>Water supply system</td>
<td>11</td>
</tr>
<tr>
<td>Multiple</td>
<td>5</td>
</tr>
<tr>
<td>Spa, pool</td>
<td>4</td>
</tr>
<tr>
<td>Wastewater treatment plant</td>
<td>3</td>
</tr>
<tr>
<td>Fountain</td>
<td>2</td>
</tr>
<tr>
<td>Shower</td>
<td>2</td>
</tr>
<tr>
<td>Others</td>
<td>10</td>
</tr>
</tbody>
</table>
Drivers of WRID in the pan-European region

• Emergence and re-emergence of pathogens: Cryptosporidium parvum and Legionella pneumophila

• Climate change and international travel
 - Geographic dissemination of WRID pathogens to new areas – Giardia lamblia

• Small scale and community operated water and sanitation systems
 - Vulnerable to environmental contamination
 - Untreated or insufficiently treated ground or surface water

• Changes in how water is used

• Increasing age and number of immunodeficient persons
Surveillance and outbreak management capacity in the pan-European region

- Passive surveillance of a limited number of pathogens
- Wide variation in number and types of pathogens, diseases and events under surveillance
- Variable sampling, laboratory testing and reporting protocols
- Limited routine testing of enteric pathogens; less testing of viruses and parasites
- Under-ascertainment of uncommon pathogens and those not covered by surveillance
- Limited laboratory capacity for testing
- Limited human and financial resources for surveillance and outbreak response
- Limited epidemiological capacity to investigate source of infection – cases not categorised as water-related
Surveillance and outbreak management capacity cont.

- Foodborne versus waterborne
- No standard definition of an outbreak and thresholds for outbreak detection not defined
- Inadequate early-warning and response systems
- Inadequate communication and coordination between public health agencies, water providers and those responsible for monitoring water quality
The need to strengthen WRID surveillance and outbreak management capacity

• Surveillance and outbreak response procedures need to be harmonised and strengthened in order to:
 - Generate more robust data on the true burden of WRID
 - Generate data on the causes of outbreaks
 → Inform investments in water supply systems
 → Inform public health action to control WRID
Useful references for further reading

WHO (2017): Legionella and the prevention of legionellosis.
https://apps.who.int/iris/handle/10665/43233

Acknowledgement

The training modules on water-related disease surveillance and outbreak management were developed within the programme of work of the WHO Regional Office for Europe and United Nations Economic Commission for Europe Protocol on Water and Health. Maureen O’Leary (Independent Consultant Epidemiologist, United Kingdom) and Bernardo Guzmán Herrador (Ministry of Health, Spain) prepared the presentations and manuals for the facilitator and participants. Enkhtsetseg Shinee (WHO European Centre for Environment and Health (ECEH), Germany) coordinated the process and provided conceptual input to content development of the training package under the strategic direction of Oliver Schmoll (WHO ECEH, Germany). WHO gratefully acknowledges the helpful feedback provided by Krešimir Čohar (Institute of Public Health, Croatia), Laura Huber (WHO Collaborating Centre for Research on Drinking-water Hygiene, German Environment Agency, Germany) and Susanne Hyllestad and Karin Nygård (Institute of Public Health, Norway) during the review process. Imre Sebestyén (Unitgraphics, Serbia) and Dennis Schmiege (WHO ECEH, Germany) prepared the design and layout, and administrative support was provided by Andrea Rhein (WHO ECEH, Germany). The WHO Regional Office for Europe and UNECE gratefully acknowledge the financial support provided by the Norwegian Ministry of Health and Care Services.