Principles and steps of an outbreak investigation

Module 2.1
What is an outbreak?

- Unexpected increase in cases in a specific place and time
- Exceedance of a predefined alert threshold
- Two or more cases of disease linked to the same source
What is an waterborne outbreak? - WHO definition

At least two people experience a similar illness after exposure to water and the evidence suggests a probable water source.
(Large water supply) waterborne outbreaks

- Associated with watershed events:
 - Defects in the water-treatment process or distribution system
 - Exceedance of water-quality parameters
- Sudden, rapid and widespread occurrence of gastrointestinal consultations
- Clustering of cases in a particular water-supply zone
When to investigate a waterborne outbreak?

• The outbreak is likely to continue if no intervention
• Unknown source
• Unknown cause
• Severe and/or unusual disease
• Large number of cases
When to investigate a waterborne outbreak?

- The outbreak is likely to continue if no intervention.
- Unknown source
- Unknown cause
- Severe and/or unusual disease
- Large number of cases

However, it will still be important to identify the cause and contributing factors in order to prevent new outbreaks.
Outbreak investigation objectives

• Confirm the outbreak
• Identify the source and contributing factors
• Implement control measures

→ In order prevent further cases
Outbreak investigation steps

• Differ from outbreak to outbreak
• Simultaneous and in parallel
• Control measures as early as possible
• Communication on an ongoing basis
10 step approach

1. Detect and confirm the outbreak and agent
2. Rapid Response Team (RRT)
3. Define cases
4. Identify cases and obtain information
5. Descriptive epidemiological investigation (time, place, person)
6. Additional studies (environmental, risk assessments, laboratory)
7. Interview cases and generate hypotheses
8. Evaluate the hypotheses
9. Inform risk managers and implement control measures
10. Communicate findings, make recommendations and evaluate the outbreak response
Step 1. Detect and confirm the outbreak and agent

Health-care systems
- Detection by surveillance systems
 - Indicator and event based surveillance
 - Epidemiological
 - Microbiological
- Health-care facilities reports

Water quality
- Routine samples with faecal bacteria
- Water treatment or distribution failures
- User complaints

Other signals
- Absenteeism from work, schools
- Increased sales of certain medications
- Media reports
Step 1. Detect and confirm the outbreak and agent

Is the outbreak real? → More cases than expected?

Seasonal variations?
Notification artefacts?
New surveillance system?
Diagnostic bias?
Step 1. Detect and confirm the outbreak and agent

- Outbreak confirmed
- Rapid Risk assessment
 - Contact drinking water provider
 - Immediate precautionary control measures
 - Contact all relevant stakeholders
 - Environmental specimen collection strategy
Identifying the microorganism helps to:

- develop a hypothesis about the source (previous events)
- identify time of exposure (incubation period)
- choose control measures

Step 1. Detect and confirm the outbreak and agent

- Do not wait for lab results to start the investigation
- Confirm a proportion of cases
Step 1. Detect and confirm the outbreak and agent

- Time between the contamination event and the outbreak detection
 - Long incubation periods
 - Few cases go to the doctor ("peak of the iceberg")
- Longer delay \rightarrow lower probability of detecting the agent in water
- Relevant water samples may no longer be available
Large waterborne *Campylobacter* outbreak in Norway in 2019

Hyllestad et al. (2020), Eurosurveillance

Available from: https://doi.org/10.2807/1560-7917.ES.2020.25.35.2000011
Step 1. Detect and confirm the existence of the outbreak and confirm the causative agent

6 June 2019, Askøy, Norway.

• In 24 h, 10 people hospitalized with fever, abdominal pain and diarrhea, and 30 consultations from out-of-hours primary healthcare services.

• Many patients presenting with gastroenteritis had home addresses near each other → drinking-water?

• One person tested positive for Campylobacter

• Medical Officer in Askøy reports the outbreak to the Norwegian Institute of Public Health.

Outbreak context

- Island municipality Askøy, Norway
- 29,500 inhabitants

Outbreak context

- Three different water supply systems in Askøy: A, B, C
- Water Supply System A (WSS-A) from the 1950s, serves ca. 12,000 people in the south of the island.
- WSS-A has 9 reservoirs, including 3 built as unlined mountain caverns.
- One of these reservoirs was reservoir X

Step 1. Detect and confirm the existence of the outbreak and confirm the causative agent

Immediate precautionary control measures taken once outbreak detected

- **6 June:** Boil Water Advice issued
- **7 June:** Reservoir X taken out of service

Hyllestad et al. (2020): Large waterborne _Campylobacter_ outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. _Eurosurveillance_, https://doi.org/10.2807/1560-7917.ES.2020.25.35.2000011
Step 2. Form the Rapid Response Team (RRT)

1. Outbreak confirmed
2. Investigation needed
3. Form the Rapid Response team
Step 2. Form the Rapid Response Team (RRT)

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local/regional public Health agency</td>
<td>Overall coordination</td>
</tr>
<tr>
<td>Food/water authority</td>
<td>Environmental investigation</td>
</tr>
<tr>
<td>Water supplier</td>
<td>Control measures implementation</td>
</tr>
<tr>
<td>Health-care providers</td>
<td>Case management</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Microbiological investigation</td>
</tr>
</tbody>
</table>

Communication experts!!
Step 2. Form the Rapid Response Team (RRT)

Coordinating activities across agencies can be difficult

• Clear roles and responsibilities
• Teams before an outbreak occurs
• Contact meetings and exercises between crisis
Step 2. Form the Rapid Response Team (RRT)

- Complete investigation planned
 - Epidemiological
 - Microbiological
 - Environmental

- Municipal services
- Norwegian Food Safety Authority
- Norwegian Institute of Public Health

Step 3: Define cases

Case definition components
- Time
- Place
- Person

Case Classification
- Possible
- Probable
- Confirmed
Step 3: Define cases

“A person (who?) living in town XXXX (where?), with diarrhoea (≥ 3 loose stools in 24 hours) and any one of the following symptoms – abdominal pain, nausea and vomiting (who?) – and date of onset of symptoms from 1 August 2020 (when?) and not travel history (who?, where?).”
Step 4: Identify cases and obtain information

In order to:

• Estimate the size of the outbreak and its distribution
• Determine the population at risk
• Enroll patients
 • hypothesis-generating pilot interviews
 • descriptive and analytical epidemiology
• Identify patients who need treatment
Step 4: Identify cases and obtain information

How?

• Passive case finding → Existing surveillance system.

• Active case finding
 • Additional laboratories not part of national surveillance systems
 • Public and private hospitals or primary healthcare centers
 • People at risk: school children, nursing homes, mass gatherings
 • Invitation lists, reservation lists, guest lists
Step 4: Identify cases and obtain information

Line List

- Basic information on each case
 - ID, age, type of case, sex, phone number, residence, clinical information....
- One line per case
- Spreadsheet
- Updated as the investigation develops

- Facilitates systematization of the information
- Provides an overall picture
Step 4: Identify cases and obtain information

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>Age</th>
<th>District</th>
<th>Address</th>
<th>Phone</th>
<th>Hospital admission</th>
<th>Interviewed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>17</td>
<td>A</td>
<td>Water Street</td>
<td>99999</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>27</td>
<td>A</td>
<td>Water Street</td>
<td>88888</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>53</td>
<td>A</td>
<td>Water Street</td>
<td>77777</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>81</td>
<td>A</td>
<td>Water Street</td>
<td>66666</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>23</td>
<td>B</td>
<td>Water Street</td>
<td>55555</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>44</td>
<td>B</td>
<td>Lake Street</td>
<td>44444</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>38</td>
<td>B</td>
<td>Pound Square</td>
<td>33333</td>
<td>?</td>
<td>N</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Step 4: Identify cases and obtain information

Pilot interviews

• Standardized questionnaire:
 • clinical information, risk factors and demographics
• Comprehensive: all relevant exposures
• Few interviewers
• Sample of cases

• Obvious common exposures?
• Exclude exposures?
9. What kind of water supply do you have in your household?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Unsure</th>
<th>Details (for instance name of the water work):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water works for at least 20 households</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water works for fewer than 20 households</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private water supply for just your household</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you have a private water supply for just your household, or if you receive water from:

What kind of source does the water come from?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Unsure</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake, river or brook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borehole, groundwater well</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dug well</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Is your drinking water treated (disinfected with chlorine or UV)?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Unsure</th>
<th>If yes, what kind of treatment?</th>
</tr>
</thead>
</table>

11. Did you drink tap water, either at home or elsewhere, during the week before you got ill?

Also include water used to make juice, lemonade, or ice cubes.

At home: Yes ☐ No ☑ Unsure ☐ If yes, how many glasses per day? (1-2)

Elsewhere: Yes ☐ No ☑ Unsure ☐ If yes, how many glasses per day? (1-2)

Where? What kind of water

12. Did you drink water directly from a lake, pond, river or brook? (for instance while hiking)

Yes ☐ No ☑ Unsure ☐ If yes, where?

13. Did you drink any water from a well or cistern? (for instance at a holiday cabin or tourist cabin)

Yes ☐ No ☑ Unsure ☐ If yes, where?

14. Did you drink bottled water or water from a container?

Yes ☐ No ☑ Unsure ☐ If yes, what kind of water?

1. What kind of symptoms did you have?

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Yes</th>
<th>No</th>
<th>Unsure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea (how frequent?)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloody stools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint pain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other symptoms (what kind?)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the fever was measured: How many degrees?

2. When did you become ill?

Date / time: (Date when you first noticed symptoms)

3. How long lasted your illness?

Days / hours: Are you still sick?

4. Do you know other persons who had similar symptoms in the week before or the week after the day when your illness started?

If the answer is yes, did the person(s) become ill before or after your illness began?

Step 4: Identify cases and obtain information

Questionnaires distribution

- Email
- Web questionnaires
- Telephone interviews
- Paper questionnaires by mail
- Social media
Step 5: Descriptive epidemiological investigation

What do cases have in common? → Generate hypothesis

- **Time**
 - When were they infected?

- **Place**
 - Where were they infected? Where do they live?

- **Person**
 - What are the symptoms and etiology? Who was infected?
Step 3: Define cases
Step 4: Identify cases and obtain information
Step 5: Descriptive epidemiological investigation

- Outbreak monitoring → Determine the extend of the outbreak
 - Case finding: gastroenteritis consultations
 - Map gastroenteritis consultations
 - Trawling questionnaires to first campylobacteriosis cases

- Survey childcare centres → Ascertain start and distribution of the outbreak and document absence for illness

Step 3: Define cases
Step 4: Identify cases and obtain information
Step 5: Descriptive epidemiological investigation

Outbreak monitoring → Determine the extend of the outbreak

- **Case finding:** Gastroenteritis consultations *(who?)* at primary care in Askøy *(where?)* between 3 June and 15 June *(when?)*
- **Map** consultations by household address and water supply
- **Trawling questionnaires** to first campylobacteriosis cases
 - Food consumption
 - Animal contact
 - Environmental exposures
 - Clinical and demographical information

Country example

Hyllestad et al. (2020): Large waterborne *Campylobacter* outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance, https://doi.org/10.2807/1560-7917.ES.2020.25.35.2000011
Step 3: Define cases
Step 4: Identify cases and obtain information
Step 5: Descriptive epidemiological investigation

Number of gastroenteritis consultations at general practitioner and out-of-hours primary healthcare services

Outbreak monitoring

• Sharp increase in gastroenteritis consultations (from 12 to 182 consultations) on Thursday 6 June

• Consultations evenly distributed among all age groups, although in-person consultations were primarily for children

Step 3: Define cases
Step 4: Identify cases and obtain information
Step 5: Descriptive epidemiological investigation

Step 3: Define cases
Step 4: Identify cases and obtain information
Step 5: Descriptive epidemiological investigation

Water supply zones of water supply system WSS-A defined by different reservoirs Zones 6, 7 and 8 were served by Reservoir X.

Estimated incidence rates for gastroenteritis consultations linked to reservoir supply zones

Outbreak monitoring

Gastroenteritis patients’ residences were coincided with three water supply zones served by Reservoir X.

The three zones with Incidence Rate > 1 are the ones served by Reservoir X.

Step 3: Define cases
Step 4: Identify cases and obtain information
Step 5: Descriptive epidemiological investigation

Step 3: Define cases
Step 4: Identify cases and obtain information
Step 5: Descriptive epidemiological investigation

Outbreak monitoring

• Trawling questionnaires to five campylobacteriosis cases.
 • Diarrhoea, stomach pain and fever (onset 4-5 June)
 • Tap water at home in the week before symptom onset
 • Attendance to events, food items, contact with animals or recreational water not common to all five cases

Survey of childcare centres

• **Case definition**: any person absent from the childcare centre (child or employee) because of diarrhoea or vomiting (*who?*, *where?*) between 28 May and 7 June (*when?*)

• Comparison of **attack rates** in childcare centres served/not served by Reservoir X

Hyllestad et al. (2020): Large waterborne Campylobacter outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance, https://doi.org/10.2807/1560-7917.ES.2020.25.35.2000011

Step 3: Define cases
Step 4: Identify cases and obtain information
Step 5: Descriptive epidemiological investigation
Survey of childcare centres

- All childcare centres (n=27) in the municipality participated in the study. Eight (769 children and employees) in areas supplied by Reservoir X and 19 (1,761 children and employees) in areas supplied by other reservoirs.
 - Childcare centres in affected areas: Attack rate: 20%
 - Childcare centres in unaffected areas: Attack rate 2%
- Absences started to increase at the childcare centres in affected areas on 3 June (n=26) and peaked on 7 June with 81 absences

Step 6: Additional studies (environmental, laboratory)

→ Environmental investigation
→ Laboratory investigation of the water supply system
Step 6: Additional studies
Environmental investigation

1) Description of the water supply system

- Water source
- Abstraction points and distribution network
- Treatment processes
- Storage tanks
- Distribution network
- Location of potential contamination sources
2) Rapid system assessment → Hazardous events? Control measures in place?

• Interview water-supply system personnel
• Review outcomes of sanitary surveys
• Assess water quality information and weather records
• Operational records and procedures: any problems compromising control measures?
• Customer complaint reports
• Non-piped systems: Review water collection, transport and handling
• Map potential exposures of interest
Step 6: Additional studies
Laboratory investigation of the water-supply system

• Provides strong evidence on the link between the source and cases
• Still possible to demonstrate that water is the source of an outbreak even if the agent is not isolated from the water-supply system
Step 6: Additional studies

Laboratory investigation of the water-supply system

- Increase frequency of sampling
- Increase the number of sampling sites
 - Suspected sources of pollution
 - Critical points in the treatment plant
 - Water and sediment from storage reservoirs and the distribution system
 - Stored water
Step 6: Additional studies
Laboratory investigation of the water-supply system

Microorganisms may not be detected in the water-supply system due to:

• Time between the contamination event, exposure and sampling.
• Transient contamination
• Disinfection of the system as a preliminary measure
• Special sampling needed to isolate enteric viruses or protozoa
Environmental investigation – Description of the water supply network

Under normal conditions, Reservoir X supplies Zone 6 (1,350 residents)

Before the outbreak, a valve opened from Reservoir X to ensure replacement of water in response to customer complaints about the water quality.

This led to a connection between zone 6 and zones 7 and 8 (3,558 residents) with drinking water from both Reservoir X and others.

Consultations indicated a higher IR in these zones.

The valve was closed on 6 June.

Hyllestad et al. (2020): Large waterborne *Campylobacter* outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance, https://doi.org/10.2807/1560-7917.ES.2020.25.35.2000011
Environmental investigation – Visual inspection of Reservoir X

- Basin constructed as an unlined rock cavern. Its entrance sealed by a locked door
- 400 m3 of water, located above a residential area in mountainous terrain
- Natural cracks located in the back of the reservoir, leaks in the concrete construction and water running from inside the roof.
- Large antenna with power lines above the reservoir, were birds could gather
 - Risk of bird faeces contaminating the area below
- No animals observed
- No unusual malfunctions reported before the outbreak

Hyllestad et al. (2020): Large waterborne *Campylobacter* outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance, https://doi.org/10.2807/1560-7917.ES.2020.25.35.2000011
Environmental investigation – Weather records.

Weather data from a nearby weather station indicated heavy rainfall.

This coincided with registered consultations of gastroenteritis in the Norwegian Syndromic Surveillance System.

Step 6: Additional studies (environmental, laboratory)

Analysis of water in WSS-A or in Reservoir X.

- Routine samples prior to the outbreak did not detect any faecal indicator bacteria after the outbreak, extra sampling in WSS-A was conducted.
- Routine samples for WSS-A on 3 June were also negative.
- On 6 June, samples collected from Reservoir X and areas supplied by Reservoir X were contaminated.
- Several samples positive for *Campylobacter* (7 June).

Step 6: Additional studies (environmental, laboratory)

Hyllestad et al. (2020): Large waterborne *Campylobacter* outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance, https://doi.org/10.2807/1560-7917.ES.2020.25.35.2000011
Step 7: Generate hypotheses

Descriptive epidemiology
- Age
- Sex
- Residence
- Work place
- Routines

Microbiology
- Incubation period
- Mode of transmission
- Previous outbreaks

Environment
- Risk assessments
- Inspections
Step 8: Evaluate the hypotheses
Analytical studies
Assessing the strength of evidence

• **Analytical studies** may generate stronger evidence to support the hypothesis and to quantify the strength of the association

• Compare exposure between cases and non-cases and identify risk factors

Cohort studies
Case-control studies
Challenges when collecting water usage exposure:

• Time elapsed between the exposure and the investigation
• Respondents may have changed water use as part of control measures
• Exposure to different water sources: home, workplace, sport center...
• Household members may be exposed to different water sources.
Step 8: Analytical studies- Considerations

Everyone is exposed to the same water source?

Measure Dose response
Risk increases with increasing amounts of water
Step 8: Evaluate the hypotheses
Assessing the strength of evidence

<table>
<thead>
<tr>
<th>A. Pathogen identified in clinical cases also found in water</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Water quality failure and/or water-treatment problem of relevance, but outbreak pathogen is not detected in water</td>
</tr>
<tr>
<td>C. Evidence from an analytical (case-control or cohort) study demonstrates an association between water and illness</td>
</tr>
<tr>
<td>D. Descriptive epidemiology suggests that the outbreak is water-related and excludes obvious alternative explanations</td>
</tr>
</tbody>
</table>

Strongly associated if \((A+C)\) or \((A+D)\) or \((B+C)\); probably associated if \((B+D)\) or \(C\) only or \(A\) only; possibly associated if \(B\) only or \(D\) only.

Source: Tillet et al
Cohort study of households

All residents who received water from WSS-A were included

Exposed: people in households receiving water from Reservoir X

Case definition: person with gastroenteritis with symptom onset between 01 and 19 June 2019

Step 8: Evaluate the hypotheses
Analytical studies
Assessing the strength of evidence

Step 8: Evaluate the hypotheses
Analytical studies
Assessing the strength of evidence

Cohort study of households

SMS with link to a questionnaire sent to all households served by WSSA
One person should respond on behalf of all household members.
The questionnaire included items on illness and tap water consumption

Step 8:
Evaluate the hypotheses
Analytical studies
Assessing the strength of evidence

Cohort study of households

- Information available from 2,526 persons who responded on behalf of 6,108 household members
- Coverage of 51% (6,108/11,995) of the residents supplied by WSSA

Step 8: Evaluate the hypotheses
Analytical studies
Assessing the strength of evidence

Cohort study of households

- Mean age: 34 years (0-93)
- 50% were female
- 1,573 respondents met the case definition
- Attack rate: 26%
- Number of cases peaked on 6 June and decreased gradually thereafter

Step 8:
Evaluate the hypotheses
Analytical studies
Assessing the strength of evidence

Cohort study of households
Attack rates and risk ratio for areas supplied by Reservoir X and other areas

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Households</th>
<th>Individuals</th>
<th>Cases</th>
<th>Attack rate</th>
<th>Risk ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other reservoirs in WSS-A (zones 1–5)</td>
<td>1,653</td>
<td>4,098</td>
<td>481</td>
<td>12%</td>
<td>Reference</td>
</tr>
<tr>
<td>Reservoir X (zones 6–8)</td>
<td>873</td>
<td>2,010</td>
<td>1,092</td>
<td>54%</td>
<td>4.6 (4.2–5.0)</td>
</tr>
</tbody>
</table>

Step 8: Evaluate the hypotheses
Analytical studies
Assessing the strength of evidence

Cohort study of households

Risk of gastrointestinal illness by consumption of tap water

<table>
<thead>
<tr>
<th>Daily tap water consumption</th>
<th>Individuals</th>
<th>Cases</th>
<th>Attack rate</th>
<th>Risk ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 glasses</td>
<td>381</td>
<td>27</td>
<td>7%</td>
<td>Reference</td>
</tr>
<tr>
<td>1–3 glasses</td>
<td>2,562</td>
<td>586</td>
<td>23%</td>
<td>3.2 (2.2–4.7)</td>
</tr>
<tr>
<td>4–6 glasses</td>
<td>2,255</td>
<td>654</td>
<td>29%</td>
<td>4.1 (2.8–5.9)</td>
</tr>
<tr>
<td>≥7 glasses</td>
<td>910</td>
<td>306</td>
<td>34%</td>
<td>4.7 (3.3–6.9)</td>
</tr>
</tbody>
</table>

Hyllestad et al. (2020): Large waterborne *Campylobacter* outbreak: use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. *Eurosurveillance*, https://doi.org/10.2807/1560-7917.ES.2020.25.35.2000011
Step 9: Implement control measures

- Implemented immediately
 - Boil water advisory

- Evaluated and adjusted continuously throughout the outbreak

- Control measures should also target the underlying causes of the outbreak
 - Insufficient policy or tools?
 - Inadequate training of waterworks personnel?
 - Inadequate maintenance of the water distribution system?

- The outbreak may prompt policy changes
Step 9: Implement control measures

Immediate precautionary control measures

- Boil water advice issued
- Reservoir X taken out of service
- Emergency water supply distribution from water tanks located in public areas
- Infection control measures in public services were strengthened

Important considerations

• The triangulation of epidemiological, genomic, geographical and water systems data was essential for confirming the role of Reservoir X

• Rationale for the early decisions was based on local knowledge and mapping of cases rather than epidemiological studies.

• The use of mixed methods allowed to identify contributing factors, such as inclement weather conditions.

Important considerations

- Water contamination through cracks in a mountain reservoir, because of heavy rainfall
- Water supply systems, in particular ageing infrastructure, are generally vulnerable to contamination especially as external risks such as climate factors are changing.
- Importance of conducting water safety planning, updating the infrastructure and performing risk-based surveillance to mitigate risks.

Step 10
Communicate findings, make recommendations and evaluate the outbreak response

• Communication should begin early
 • What is already known?
 • What is being done?

• Control measures should be communicated continuously to relevant stakeholders

• The public should receive regular updates

• Detailed outbreak report
Step 10
Communicate findings, make recommendations and evaluate the outbreak response

After-action review:

• Outbreak detection and alert
• Suitability and speed of implementation of control measures
• Outbreak reporting and communication
• What worked well
• What could be improved
• This module is based on the document: *Surveillance and outbreak management of water-related infectious diseases associated with water-supply system.* Copenhagen: WHO Regional Office for Europe; 2019. Licence: CC BY-NC-SA 3.0 IGO.

• Additional references are:

 - Additional references were materials used in pilot national training workshops on water-related disease surveillance previously run by the World Health Organization Regional Office for Europe under the framework of the Protocol of Water and Health and training materials from the the European Programme for Intervention Epidemiology Training (EPIET)
Acknowledgement

The training modules on water-related disease surveillance and outbreak management were developed within the programme of work of the WHO Regional Office for Europe and United Nations Economic Commission for Europe Protocol on Water and Health. Maureen O’Leary (Independent Consultant Epidemiologist, United Kingdom) and Bernardo Guzmán Herrador (Ministry of Health, Spain) prepared the presentations and manuals for the facilitator and participants. Enkhtsetseg Shinee (WHO European Centre for Environment and Health (ECEH), Germany) coordinated the process and provided conceptual input to content development of the training package under the strategic direction of Oliver Schmoll (WHO ECEH, Germany). WHO gratefully acknowledges the helpful feedback provided by Krešimir Čohar (Institute of Public Health, Croatia), Laura Huber (WHO Collaborating Centre for Research on Drinking-water Hygiene, German Environment Agency, Germany) and Susanne Hyllestad and Karin Nygård (Institute of Public Health, Norway) during the review process. Imre Sebestyén (Unitgraphics, Serbia) and Dennis Schmiege (WHO ECEH, Germany) prepared the design and layout, and administrative support was provided by Andrea Rhein (WHO ECEH, Germany). The WHO Regional Office for Europe and UNECE gratefully acknowledge the financial support provided by the Norwegian Ministry of Health and Care Services.