9.1 Special considerations for substances consumed in small amounts

Many of the substances evaluated by JECFA are present in food at low concentrations. Examples include flavouring substances, which are added to food to enhance organoleptic appeal, processing aids, extraction solvents and enzymes used in food production. Also included are residues migrating into food from packaging materials, environmental contaminants, such as lead, cadmium, mercury and chlorinated organic chemicals, as well as residual amounts of pesticides and drugs used in livestock production. Residues in food from pesticides and veterinary drug use are not considered further here, as they have been discussed in detail in chapter 8.

For processing aids, extraction solvents, enzymes and residues of packaging materials, JECFA has developed guidelines (Annex III of IPCS, 1987) for evaluation, which
include determination of the level of residues in foods, intake, metabolic fate of residues and
the availability of toxicological data.

JECFA has placed special emphasis on the safety evaluation of heavy metals and
persistent organic contaminants in food because of the ability of many of these substances
with very long half-lives to bioaccumulate in tissues. Because of this property, JECFA
established the concept of “tolerable weekly or monthly intakes”, which is a departure from
the traditional ADI concept. This concept reflects the fact that single or short-term repeated
exposures to these materials may not be of toxicological consequence, but that low-level
sustained exposure may result in tissue levels that present a risk.

For contaminants that do not bioaccumulate, such as tin, arsenic, styrene and
aflatoxin, JECFA has established “maximum tolerable daily intakes”. The term tolerable
applied to contaminants expresses the concept that exposure to these substances, while
generally undesirable, is unavoidable due to their ubiquitous presence in the food supply. In
recognition of this fact, JECFA in 1978 introduced the concept of an “irreducible level”,
which is defined as “the concentration of a substance which cannot be eliminated from food
without discarding that food altogether, or severely compromising availability of major food
supplies.”

9.1.1 Threshold of toxicological concern

The objective of the majority of risk assessments is to establish safe intake levels for
chemicals. The methodology to accomplish this task, outlined elsewhere in this monograph,
essentially involves hazard identification, hazard characterization, exposure assessment and
risk characterization (see chapters 4, 5, 6 and 7). The establishment of safe intake levels
typically involves the first two steps of this process, in which NOAELS are determined,
either from animal studies or from human observations, and translated into acceptable
exposure levels or health-based guidance values, such as an ADI (see chapter 5). This
traditional approach, which has been in constant use for over 50 years, generally requires that
 toxicological data are available on each chemical substance to perform a safety assessment.

The toxicological potency of the chemicals to which humans are exposed via the diet
varies up to 6 or more orders of magnitude. This means that the exposure at which adverse
effects are triggered, in terms of the amount of substance ingested per unit body weight,
varies considerably between substances. Many factors influence the inherent toxicity of
chemicals, including chemical reactivity, metabolism and toxicokinetics, and intrinsic
toxicity to biological systems. Among organic chemicals, the principal determinant of
toxicity is chemical structure; information accumulated over time indicates that the presence
of functional groups on a molecule is a primary determinant of inherent toxicity. For
example, for most chemical carcinogens, the structural features leading to DNA reactivity
and subsequent carcinogenesis have been elaborated (Ashby & Tennant, 1991).

The knowledge that toxicity is a function of chemical structure and of the extent of
exposure is the basis of the concept of the TTC, and the TTC approach can be used to
facilitate risk assessment of substances present at low levels in the diet for which there are
few or no toxicity data. The approach is based on the concept that a human exposure
threshold value can be determined for substances, below which there is a very low probability
of any appreciable risk to human health (Munro et al., 1996). The TTC concept has been
developed and refined over the last two decades.

Regulatory agencies have long had an interest in this concept, because humans may
be exposed to very small amounts of an enormous number of naturally occurring and human-
made chemicals from a wide variety of sources. The TTC concept was initially proposed by
Rulis (1986, 1989, 1992) as a way for the USFDA to remove unnecessary requirements for
testing of components of packaging materials that could migrate in extremely low amounts into foods.

Based on the assumption that carcinogenicity would be the most critical effect at low exposures, Rulis (1986, 1989, 1992) applied a mathematical approach to the development of a threshold of concern for food contact materials. Rulis (1986) transformed the potencies (expressed as TD\textsubscript{50} values) of 343 orally administered carcinogens, compiled by Gold et al. (1984), into a distribution of exposures calculated to present a theoretical lifetime cancer risk of 1 in 1 million by simple linear extrapolation. His analysis indicated that it was highly probable that dietary exposures to organic chemicals at levels of 0.05 µg/kg of diet or less would not present a carcinogenic risk to humans, regardless of chemical structure, and therefore it was not necessary to obtain animal toxicity data to evaluate such exposures.

Munro (1990) reanalysed the data assessed by Rulis (1986) using the same methodology and also applied a probabilistic approach to three alternative data sets, consisting of 1) carcinogens from the updated database of Gold et al. (1989), 2) the NTP carcinogens as defined by Ashby & Tennant (1988) and Ashby et al. (1989), and 3) carcinogens selected using conservative biological criteria. Overall, the results of the reanalysis indicated that there was low probability that a level of 1 µg/kg of diet of a substance of unknown toxicity would present a greater than 1 in 1 million risk of cancer.

On the basis of this work, the USFDA established a “threshold of regulation” for indirect food additives (the term used by the FDA for migrants from food contact materials) of 0.5 µg/kg total diet (USFDA, 1995). This is equivalent to a daily intake of 1.5 µg, assuming consumption of 3 kg food and liquid per day. The USFDA stated that this threshold of regulation would be applied to indirect food additives that are not known to be carcinogens and that do not contain structural alerts indicative of carcinogenicity. Substances meeting these criteria and with intakes less than the TTC would not require toxicological testing.

It should be noted that the threshold of regulation adopted by the USFDA was based on a presumption that migrating packaging material components might be carcinogenic. Assuming that 1 in 10 compounds assessed might be a carcinogen, a TTC value of 1.5 µg/person per day was derived from the distribution of TD\textsubscript{50} values in the Gold et al. (1989) carcinogen database: at this intake, there is a 96% probability that the risk of cancer would be 1 in 1 million or less. If carcinogenic potential could be ruled out, presumably higher threshold values could be generated for non-carcinogenic components. To this end, the analyses conducted by the USFDA (1995), Rulis (1986, 1989, 1992) and Munro (1990) were further developed by Munro et al. (1996) through compilation of a database consisting of over 600 reference substances from which distributions of NOELs were derived. The reference database presented the toxicity in terms of NOELs for a wide variety of organic chemicals of diverse structure, similar to the efforts of the previous workers but, in this case, grouped into three general classes based on chemical structure using the decision-tree of Cramer et al. (1978). The use of a structural classification is based on the well accepted tenet that inherent toxicity is related to chemical structure. This reference database was used to derive a threshold of human exposure that would be without safety concern for each of the three structural classes and which can be applied to substances lacking toxicity data.

Munro et al. (1996) plotted the distribution of NOELs for 600 chemical substances that included food additives, drugs, industrial chemicals and pesticides, arranged according to the three structural classes of Cramer et al. (1978). The 5th percentile of the distribution of NOEL values was calculated for each of the three structural classes. These 5th percentile NOELs were then transformed into human exposure thresholds values, referred to as TTCs, by dividing the 5th percentile NOEL for each structural class by a 100-fold uncertainty factor. The TTC values for Cramer et al. (1978) structural classes I, II and III were 1800, 540,
and 90 µg/person per day respectively. Since the TTC approach compares human exposure threshold values with exposure data, it requires sound estimates of human exposure.

Subsequent work conducted by Kroes et al. (2000, 2004) attempted to evaluate further the appropriateness of the thresholds proposed by Munro et al. (1996) to the distributions of NOELs for various specific forms of toxicity, such as developmental toxicity, neurotoxicity and immunotoxicity. With the exception of neurotoxicity induced by organophosphorus compounds, none of the end-points examined produced TTC values less than the TTC for Cramer et al. (1978) structural class III of 90 µg/person per day, and all classes of substances examined (including endocrine disrupting chemicals) would be accommodated within the TTC based on the carcinogen database of 1.5 µg/person per day.

Kroes et al. (2004) developed a decision-tree for the application of the TTC concept for substances in structural classes I, II and III. The decision-tree also includes a TTC for potential genotoxic carcinogens, based on the carcinogenic potencies associated with 730 compounds, mostly drawn from the Gold et al. (1989) carcinogen database (Gold & Zeiger, 1997). Analyses by Cheeseman et al. (1999) had indicated that the TD_{50} values for different structural alerts could be used to identify the most potent genotoxic carcinogens. Kroes et al. (2004) incorporated into their decision-tree (Figure 9.1) a TTC value of 0.15 µg/person per day for those compounds that contained certain structural alerts for genotoxicity. They excluded substances with aflatoxin-like, azoxy- and nitrosamine groups, because such substances would give a high probability of a theoretical lifetime cancer risk greater than 1 in 1 million at such an intake, whereas other substances with structural alerts for genotoxicity would present a 95% probability of less than 1 in 1 million risk. They also excluded metals and metal-containing compounds and proteins, because the database from which the TTC values were derived did not include these types of substances. Polyhalogenated dibenzodioxins, dibenzofurans or biphenyls were also excluded because of their long half-lives and wide species differences in toxicokinetics; in addition, such substances would be evaluated by the TEF approach so that the TTC concept would not be appropriate. The rationale for the TTC value of 0.15 µg/person per day is similar to the TTC value of 1.5 µg/person per day (discussed above), except that it was assumed that all compounds with such structures could be potential DNA-reactive carcinogens, rather than 1 in 10 as used in the derivation of the higher value. The TTC of 0.15 µg/person per day is designed to allow the formulation of timely advice to risk managers about the possible risk due to very low levels of a compound with a structural alert for genotoxicity or with positive evidence of genotoxicity and is not intended to provide a rationale for the deliberate addition of such a compound to the food supply.

A major advantage of the TTC concept is that it presents a method for focusing resources on public health problems of greatest significance. Substances having exposures below the relevant TTC have low potential for human harm and low priority for testing. The procedure provides confidence that substances consumed in very small amounts present only a minimal potential for risk. Moreover, the TTC provides a reasonable and science-based alternative to animal testing of substances with innocuous structures and minimal exposure.

At its sixty-fifth meeting in 2006 (WHO, 2006), JECFA considered the application of approaches involving the TTC, not only for the risk characterisation of flavourings, for which the TTC concept had been used by JECFA for a decade (see section 9.1.2 below), but also for other substances present in the diet in small amounts. The Committee noted that the following considerations should be taken into account for further application of TTC approaches:

- The approaches should be used in conjunction with conservative estimates of dietary exposure.
• Additional data on the toxicity of structurally related substances might be required.

Figure 9.1. Decision-tree of Kroes et al. (2004) for application of the TTC approach

It further recommended that guidance be drawn up on application of the approach with regard to substances present in the diet in small amounts, such as certain residues of processing aids, packaging materials and contaminants, to provide advice on the risk assessment of substances for which full toxicological data sets are not available or are unnecessary.

The TTC concept was introduced to allow risk assessors to provide science-based advice when there is a high probability of negligible harm based on intake and chemical structure alone. It is not intended to replace established risk assessment procedures used by JECFA and JMPR for substances such as food additives and pesticides, which undergo prior approval based on the generation of a comprehensive database. Also, the TTC approach would not replace the established procedures for dioxin-like compounds or certain heavy metals or where there are sufficient data to allow the establishment of a health-based guidance value.

9.1.2 Flavouring substances

9.1.2.1 The JECFA procedure for safety evaluation

For flavouring agents, JECFA has noted that in most cases intake of these substances is low and self-limiting, and that while a few flavouring substances may pose toxicological risks (e.g. safrole, which is carcinogenic and now no longer in use), the vast majority of flavours are metabolized rapidly to innocuous end-products (IPCS, 1987). This fact limits the need for toxicological testing of many flavouring substances, and therefore metabolic data (e.g. hydrolysis of esters) and structure–activity relationships can play a key role in their safety evaluation.

Flavouring substances are composed of divergent groups of materials, including:

- artificial substances unlikely to occur naturally in food;
- natural materials not normally consumed as food, their derived products and the equivalent nature-identical flavourings;
- herbs and spices, their derived products, and the equivalent nature-identical flavourings;
- natural flavouring substances obtained from vegetable and animal products and normally consumed as food whether processed or not, and their synthetic equivalents (IPCS, 1987).

The safety evaluation of flavouring substances presents a special challenge. Flavouring substances are generally consumed in low amounts, and there are over 2500 individual flavouring substances in use worldwide. All of the existing individual flavouring substances can be arranged into about 40 groups comprising substances with related chemical structures and similar known or predicted metabolic fates. Testing all these substances for toxicity using classical toxicological approaches would present a formidable challenge and a massive use of resources. The safety evaluation of flavours presents an opportunity to combine data on intake, metabolic fate and toxicity, including the application of the TTC concept (see section 9.1.1 above), to perform assessments of flavourings in related structural groups.

In 1995, JECFA considered a procedure, based on work subsequently published by Munro et al. (1999), that incorporated these principles into a safety evaluation procedure for
flavouring substances (WHO, 1995). The procedure was adopted by JECFA for the
evaluation of flavourings at its forty-sixth meeting in 1997 and was modified by JECFA at its
forty-ninth meeting (WHO, 1999). Between 1999 and 2006, it has been used to evaluate
approximately 1800 flavouring substances. At the sixty-fifth JECFA meeting in 2006 (WHO,
2006), the Committee reaffirmed use of the TTC approach in the evaluation procedure for
flavouring agents. The procedure is outlined in Figure 9.2.

Figure 9.2. Procedure for the safety evaluation of flavouring agents adopted by the Committee
at its forty-ninth meeting

The approach incorporates a series of criteria designed to provide a method to
evaluate flavouring substances in a consistent and timely manner. The criteria take account of
available information on intake from current uses, structure–activity relationships, and known
or predicted metabolism, plus any available toxicity data on the compound or related
compounds. The use of these criteria provides a means of sorting flavouring substances in
terms of the presence or absence of safety concerns and provides guidance on the nature and
extent of the data required to perform a safety evaluation.

The criteria take advantage of the fact that some flavouring agents occur as normal
constituents of mammalian tissues or are metabolized to form such constituents and are then
completely metabolized to innocuous end-products, such as carbon dioxide and water.
Flavouring agents with these characteristics are considered to be safe for consumption if
human intake is below the threshold of concern for the structural class, but are evaluated on
the basis of toxicity data if human intake is above the threshold of concern for the structural
class. The safety evaluation may involve the use of toxicity data on the individual substance
concerned or may rely, at least in part, on toxicity data on substances of closely related
structure.

For flavouring agents that are not known to be or predicted to be metabolized to
innocuous end-products, the safety evaluation must be based on toxicity data, even if intake is
low. In such cases, there must be an adequate margin of safety between human intake of the
flavouring agent and the NOEL for the substance or the NOEL for a substance of closely
related structure on which the safety evaluation relies. Flavouring agents currently in use for
which no toxicity or metabolic data exist, and for which intake is extremely low, less than 1.5
µg/day, could be considered not to present a safety concern provided they do not contain
structural alerts for genotoxicity.

It has been noted that the safety evaluation procedure is not intended to be applied to
flavouring agents with existing unresolved problems of toxicity. As with any scheme, its
application calls for judgement, and it should not replace expert opinion; JECFA therefore
reserved the right to use alternative approaches when data on specific flavouring agents
warranted such action.

It was noted that a key element of the procedure involves determining whether a
flavouring agent and the products of its metabolism are innocuous and/or endogenous
substances. The Committee considered that these terms require definition. It recommended
that “innocuous metabolic products” should be defined as products that are known or readily
predicted to be harmless to humans at the estimated intakes of the flavouring agent, whereas
“endogenous substances” are intermediary metabolites normally present in human tissues and
fluids, whether free or conjugated; hormones and other substances with biochemical or
physiological regulatory functions are not included. The estimated intake of a flavouring
agent that is, or is metabolized to, an endogenous substance should be judged not to give rise
to perturbations outside the physiological range.
JECFA has noted that ADIs had previously been established for some flavouring agents or groups of flavouring agents and recommended that these should be retained, since the information on which they are based is relevant to an evaluation of their safety and, in addition, they may have uses other than as flavouring agents (e.g. as food additives).

10.1.2.2 Consideration of intake estimates
When the procedure for evaluation of flavouring agents was first adopted at its forty-sixth meeting in 1996 (WHO, 1997), JECFA decided that, in view of the availability from industry of data on annual production volumes (poundage data) for several thousand flavouring ingredients, a method for calculating per capita exposure, the maximum survey-derived daily intake (MSDI), could be readily used for assessing exposure as part of the procedure for safety evaluation (see section 6.4.3.1). The estimation of dietary exposures for consumers of flavouring agents based on annual production volume data was considered to be a practical and realistic approach for the average (mean) consumer. The assessments of exposure used in the procedure are derived from figures for the total annual production of flavouring agents used in food in Europe and the United States. Estimates of intake are based on the assumption that 60% or 80% of the total amount used is reported for Europe and the USA, respectively, and that the total amount used is consumed by only 10% of the population. JECFA has noted that information on intake should be periodically updated to ensure the validity of safety evaluations.

While the Committee re-endorsed the MSDI approach at subsequent meetings, it has also discussed limitations to the use of the MSDI for estimating dietary exposure. The specific concern of the Committee was that the distribution of use levels for some flavouring agents may be uneven across different food categories and within food categories, and that an uneven distribution cannot be taken into account in the MSDI. At its fifty-fifth meeting (WHO, 2001), the Committee noted that use of the MSDI might result in underestimates of the dietary exposure of persons with high levels of consumption of certain foods. At its sixty-third meeting in 2004 (WHO, 2005), the Committee recognized that the MSDI estimates of dietary exposure are difficult to reconcile with reported maximum use levels of some flavouring agents in foods.

At its sixty-fifth meeting in 2005 (WHO, 2006), the Committee considered how better to identify and deal with flavouring agents for which the MSDI estimates, as used in the procedure, are substantially lower than the dietary exposures estimated from model diets and the levels of use. The Committee anticipated that, in most cases, the existing data would provide assurance about safety at levels of exposure higher than the MSDI, particularly for flavouring agents that are not used in a wide range of food products. Nevertheless, this assumption would need to be confirmed on a case-by-case basis. In cases where estimates of exposure based on levels of use are higher than MSDI estimates, it was likely that the exposure would exceed threshold values at steps A3 and B3 of the decision-tree (Figure 9.2). The Committee therefore explored alternative approaches for estimating dietary exposure on the basis of use levels. Use level data allow conservative estimates of dietary exposure to be made by several methods, including a model diet. In an exercise carried out in 2006 (WHO, 2006), dietary exposure estimates for many of the flavouring agents were above the relevant threshold of concern when estimated by methods based on use levels, but for only a few compounds when exposure was estimated as the MSDI. A preliminary comparison of the dietary exposure estimates with the NOEL values for selected agents indicated, however, that additional, more conservative estimates of dietary exposure would suggest a safety concern in only a few cases. The Committee therefore recommended that there should be further consideration of the most appropriate approach for evaluating the safety of flavouring agents on the basis of conservative methods for estimating dietary exposure.
At its sixty-seventh meeting in 2006 (WHO, 2007a), the Committee considered the findings of an ad hoc working group that had examined data for over 800 flavouring agents. It was noted that MSDI values could be up to 4 orders of magnitude lower than dietary exposures derived using anticipated average use levels in foods. Analysis of the safety implications showed that in the majority of cases, the differences between estimates would not have affected the conclusions reached by the Committee on those flavours, because of the increasing margin of safety at low poundages (and low MSDI estimates) compared with the relevant TTC values used in the Procedure. The ad hoc working group had explored various options and proposed an additional method of dietary exposure assessment to address the questions raised by previous Committees. The Committee recommended that an additional method to assess dietary exposure should be tested at the next meeting in 2008 and the ramifications of any differences between the MSDI and the dietary exposure estimated by the additional method would be examined.

At the sixty-eighth meeting in 2007 (WHO, 2007b), JECFA considered further findings from the ad hoc Working Group, based on information on recommended use levels supplied by industry on 57 of the 168 flavouring agents evaluated at the meeting. In recognition that models for dietary exposure estimation that assume daily consumption of large portions of several food categories containing the same flavouring agent (possible average daily intake [PADI], theoretical added maximum daily intake [TAMDI], modified theoretical added maximum daily intake [mTAMDI]) were overly conservative, an additional new method of dietary exposure assessment, termed the single-portion exposure technique (SPET), was explored. This method assumes a daily consumption of only a single portion of food containing the flavouring agent. The SPET provides a dietary exposure estimate based on use levels recommended by the industry and aims to represent the chronic dietary exposure for a regular consumer who consumes daily a specific food product containing the flavouring agent of interest. The SPET identifies the single food category containing the flavouring agent of interest that is likely to contribute the highest dietary exposure based on a “standard portion” size. The standard portion is taken to represent the mean food consumption amount for consumers of that food category, assuming daily consumption over a long period of time. The standard portion does not reflect high food consumption amounts reported in national dietary surveys for the food category and is therefore a more realistic prediction of long-term consumption patterns.

The SPET was used to estimate dietary exposure for the 57 flavouring agents. In general, the estimated dietary exposures using SPET were up to several orders of magnitude higher than those calculated by the MSDI for any of the three geographic regions for which production volume data were available (Europe, Japan and the United States). On the basis of the analysis undertaken (WHO, 2007a), the Committee concluded that the MSDI and SPET dietary exposure estimates provide different and complementary information. The SPET takes account of food consumption patterns and use levels of flavouring agents and is considered to provide an estimate of dietary exposure for a regular daily consumer of a specific food product containing the flavouring agent. The MSDI is considered to provide an estimate of the dietary exposure of the flavouring agent for an average consumer; because it is based on the reported annual production volume, it cannot take use patterns into account. The Committee noted that the addition of the SPET dietary exposure estimate to the relevant step in the Procedure would be likely to lead to a more extended evaluation in only a limited number of cases. The Committee also noted that this analysis indicated that it would not be necessary to re-evaluate flavouring agents that have already been assessed using the Procedure.

Prior to a final decision on the addition of the SPET dietary exposure estimate to the Procedure, the Committee agreed at the sixty-eighth meeting (WHO, 2007b) to repeat the
assessment of a selected number of flavouring agents using both the MSDI and SPET dietary exposure estimate for evaluation at the next meeting in 2008.

9.1.3 Food contact materials/packaging migrants
Many food contact materials are made from polymers that are usually inert biologically due to their high molecular weight. However, constituents of these polymers, such as monomers, additives, catalysts and other substances used in their manufacture, are low molecular weight substances, which theoretically could migrate from the food contact material into foods. The same can be said for other constituents of the food contact materials, such as inks used in labelling. Migration may occur during storage and be enhanced during food preparation, such as heating, microwave cooking or processing with ionizing radiation. Also, the food matrix may affect the degree of migration, such that fat-soluble substances will migrate more readily into fatty foods, whereas water-soluble substances will migrate more readily into aqueous foods.

The safety evaluation of food packaging materials presents special problems because of the very large number of them in use and the anticipated low level of migration of substances from food contact materials and consequent low intake. JECFA (IPCS, 1987) has previously set out criteria for the evaluation of these substances, noting that the following information is required:

- the chemical identity and toxicological status of the substances that enter food;
- the possible exposure, details of which can be derived from migration studies using suitable extraction procedures, and/or the analysis of food samples; and
- the nature and amount of food contact with the packaging materials, and the intake of such food.

These criteria define the fundamental data required to identify those substances that migrate, the amounts that may be present in food and consequent exposures.

In principle, two alternatives exist to perform safety evaluations on food contact materials. One is to require toxicological data regardless of the level of intake so that a safety evaluation can be performed. A second option is to apply the TTC concept, similar to that used by JECFA for the safety evaluation of flavouring substances. As discussed previously (see section 9.1.1), in 1995, the USFDA adopted a “threshold of regulation” for food packaging migrants such that the substance would be exempt from USFDA regulation if exposures were less than 1.5 µg/person per day, provided the migrant was not carcinogenic or contained structural alerts for carcinogenicity (USFDA, 1995). Given the large number of food contact materials in commerce, such an approach provides a reasonable alternative to requiring that all such migrating substances be tested for toxicity.

9.1.4 Processing aids
Processing aids are composed of diverse substances, including, but not limited to, carrier or extraction solvents and enzymes used in food processing.

9.1.4.1 Solvents
Extraction solvents are used inter alia in the extraction of fats and oils, defatting fish and other meals, and decaffeinating coffee and tea. They are chosen mainly for their ability to dissolve the desired food constituents selectively and for their volatility, which enables them to be separated easily from the extracted material with minimum damage. The points raised by their use relate to:
• toxicity of their residues;
• toxicity of any impurities in them;
• toxicity of substances such as solvent stabilizers and additives that may be left behind after the solvent is removed; and
• toxicity of any substances produced as a result of a reaction between the solvent and food ingredients.

Before any extraction solvent can be evaluated, information is required on:

• identity and amount of impurities in the solvent (including those that are formed, acquired or concentrated owing to continuous reuse of the solvent);
• identity and amount of stabilizers and other additives; and
• toxicity of residues of solvents, additives and impurities.

Impurities are particularly important, because there are wide differences in the purities of food-grade and industrial-grade solvents. The food use of extraction solvents is frequently much less than the industrial use, and considerable problems may arise in their evaluation if toxicological data exist only on the industrial grade of the solvent, which contains potentially toxic impurities that may not be present in the food-grade material. For example, when evaluating the solvents 1,1,1-trichloroethane, trichloroethylene and tetrachloroethylene, it was noted that the toxicological data indicated the presence of certain known toxic and carcinogenic substances. The interpretation of these data became extremely difficult because industrial-grade material had been used in the studies. Only food-grade material should be used in toxicological studies, and the impurities in the material should be fully identified.

Carrier solvents raise somewhat different issues. They are used for dissolving and dispersing nutrients, flavours, antioxidants, emulsifiers and a wide variety of other food ingredients and additives. With the exception of carrier solvents for flavours, they tend to occur at higher levels in food than extraction solvents, mainly because some of them are relatively non-volatile. Since carrier solvents are intentional additives and are often not removed from the processed food, it is important to evaluate their safety together with the safety of any additives or stabilizers in them.

9.1.4.2 Enzymes
Enzymes used in food processing are derived from animal tissues, plants and microorganisms. Enzymes isolated from these sources are blended with formulation ingredients, such as diluents, stabilizing agents and preserving agents. The formulation ingredients may include water, salt, sucrose, sorbitol, dextrin, cellulose or other suitable compounds. The formulated enzymes are referred to as enzyme preparations. Depending on the application, an enzyme preparation may be formulated as a liquid, semiliquid or dried product. Enzyme preparations contain either one major active enzyme that catalyses a specific reaction during food processing or two or more active enzymes that catalyse different reactions. Enzyme preparations often contain constituents of the source organism and compounds derived from the manufacturing process—for example, the residues of the fermentation broth.

JECFA has elaborated and periodically updated principles and procedures for the safety assessment of enzyme preparations. An enzyme preparation evaluated by JECFA must comply with the “General Specifications and Considerations for Enzyme Preparations Used in Food Processing” (FAO, 2006a). This document was last updated at the sixty-seventh meeting of JECFA in 2006 (WHO, 2007a). The document addresses certain aspects of safety evaluation that apply to all enzyme preparations, such as safety evaluation of the production
organism, the enzyme component, side activities, the manufacturing process and the consideration of dietary exposure. The document states that evaluation of the enzyme component should include considerations of its potential to cause an allergic reaction. The document also addresses certain safety concerns that pertain to enzyme preparations derived from genetically modified microorganisms and includes recommendations for safety assessment of the genetic material inserted into the genome of the production microorganism and for providing evidence that the enzyme preparation contains neither antibiotic inactivating proteins at concentrations that would interfere with antibiotic treatment nor transformable DNA that could potentially contribute to the spread of antibiotic resistance. For further details, the online document should be consulted (FAO, 2006a).

An enzyme preparation must also comply with the identity and purity specifications, which are established for each enzyme preparation on a case-by-case basis (FAO, 2006b). Dietary exposure is calculated on the basis of the total organic solids (TOS) content in the final (commercial) enzyme preparation and is usually expressed in milligrams or micrograms TOS per kilogram body weight per day. TOS encompasses the enzyme component(s) and other organic material derived from the enzyme source and manufacturing process while excluding intentionally added formulation ingredients. Toxicological studies are usually performed using the concentrated enzyme prior to the addition of the formulation ingredients. The TOS content of the toxicology batch is provided to enable the derivation of the NOAEL expressed in milligrams or micrograms TOS per kilogram body weight per day, from which JECFA allocates an ADI. JECFA then considers dietary exposure to an enzyme preparation in relation to the ADI.

For the purpose of toxicological evaluation, enzyme preparations used in food processing can be grouped into five major classes:

1) Enzymes obtained from edible tissues of animals commonly used as foods. These are regarded as foods and, consequently, considered acceptable, provided that satisfactory chemical and microbiological specifications can be established.

2) Enzymes obtained from edible portions of plants. These are regarded as foods and, consequently, considered acceptable, provided that satisfactory chemical and microbiological specifications can be established.

3) Enzymes derived from microorganisms that are traditionally accepted as constituents of foods or are normally used in preparation of foods. These products are regarded as foods and, consequently, considered acceptable, provided that satisfactory chemical and microbiological specifications can be established.

4) Enzymes derived from non-pathogenic microorganisms commonly found as contaminants of foods. These materials are not considered as foods. It is necessary to establish chemical and microbiological specifications and to conduct short-term toxicity studies to ensure the absence of toxicity. Each preparation must be evaluated individually, and an ADI must be established.

5) Enzymes derived from microorganisms that are less well known. These materials also require chemical and microbiological specifications and more extensive toxicological studies, including long-term study in a rodent species.

Safety assessments for enzymes belonging to classes 1–3 will be the same regardless of whether the enzyme is added directly to food or is used in an immobilized form. Separate situations should be considered with respect to the enzymes described in classes 4–5, dependent on whether they are:

a) Enzyme preparations added directly to food but not removed;
b) Enzyme preparations added to food but removed from the final product according to GMP; and
c) immobilized enzyme preparations that are in contact with food only during processing.

For a) above, an ADI should be established to ensure that levels of the enzyme product present in food are safe. The studies indicated in these guidelines are appropriate for establishing ADIs (the guidelines were originally drafted for this situation). For b), an ADI “not specified” may be established, provided that a large margin of safety exists between possible residues and their acceptable intake. For c), it may not be necessary to set an ADI for residues that could occur in food as a result of using the immobilized form of the enzyme. It is acceptable to perform the toxicity studies relating to the safety of the enzyme on the immobilized enzyme preparation, provided that information is given on the enzyme content in the preparation.

9.1.4.3 Immobilizing agents
A number of procedures involving different chemical substances are used for immobilizing enzymes (IPCS, 1987). These processes include microencapsulation (e.g. entrapment in gelatine to form an immobilized complex), immobilization by direct addition of glutaraldehyde, immobilization by entrapment in porous ceramic carrier and complexation with agents such as diethylaminoethyl cellulose or polyethylenimine. Several agents may be used in the immobilizing process. Substances derived from the immobilizing material may be in the final product due to either the physical breakdown of the immobilizing system or to impurities contained in the system.

The number of data necessary to establish the safety of the immobilizing agent depends on its chemical nature. The levels of residues in the final product are expected to be extremely low.

Some of the substances used in the preparation of immobilizing systems are extremely toxic. The levels of these substances or their contaminants permitted in the final product should be at the lowest levels that are technologically feasible, provided that these levels are below those of any toxicological concern. An ADI is not established, but there must be adequate safety for its approved use(s).

9.2 Special considerations for substances consumed in large amounts

9.2.1 Introduction
The safety assessment of substances that are consumed in relatively large amounts presents a number of special problems. Such materials include defined chemical substances such as the bulk sweeteners, sorbitol and xylitol, modified food ingredients such as modified starches, nutrients and related substances, and non-traditional whole foods.

The safety assessment of such substances should differ from that of other food additives, such as colouring and flavouring agents and antioxidants, for the following reasons:

• Many will have a high daily intake; thus, minor constituents and processing impurities assume greater-than-usual significance.
• Even though they are often structurally similar or even identical to natural products used as food and thus may appear to be of low toxicity, they may require extensive toxicity testing, because of their high daily intake.
• Some may be metabolized into normal body constituents.
• Some substances, particularly foods from novel sources, may replace traditional foods of nutritional importance in the diet.
• Many are complex mixtures rather than defined chemical substances.
• The difference between the maximum quantity that can be fed to animals in feeding tests
 without impairing the nutritional quality of the diet and the amount consumed by human
 beings, on a body weight basis, is often relatively small.

9.2.1.1 Chemical composition, specifications and impurities
Thorough chemical analysis should be performed on high-consumption substances to
measure potential impurities and to provide information on nutritional adequacy, especially
when such substances replace traditional food. It is not possible to provide a checklist of
necessary chemical studies to cover all high-consumption compounds. However, the
substance should be subjected to a full proximate analysis, and particular attention should be
paid to the points discussed in the following paragraphs.

Because the intake of undesirable impurities concomitant with the intake of bulk
ingredients is potentially high, special effort should be made to identify the impurities.
Information on the production process, including the materials and procedures involved, will
point to the types of contaminants for which limits may need to be specified. The
specifications should be accompanied by details of product variability and of the analytical
methods used to check the specifications and details of the sampling protocols. If the
substance is so complex that comprehensive product specifications on chemical composition
are impractical (as it might be, for example, for a microbial protein), the description of the
substance in the specifications may include relevant aspects of its manufacturing process. If
manufacturing data are based on production on a pilot scale, the manufacturer should
demonstrate that, when produced in a large-scale plant, the substance will meet the
specifications established on the basis of pilot data.

The permissible limits for impurities may in some cases correspond to the levels
accepted for natural foods that have similar structure or function or that are intended to be
replaced by the new material. If the substance is prepared by a biological process, special
attention should be paid to the possible occurrence of natural toxins (e.g. mycotoxins).

The substance should be analysed for the presence of toxic metals. Depending on the
intended use, analysis for metals of nutritional significance may also be appropriate.

If the nature of the substance or manufacturing process indicates the possible presence
of naturally occurring or adventitious antinutritional factors (e.g. phytate, trypsin inhibitors)
or toxins (e.g. haemagglutinins, mycotoxins, nicotine), the product should be analysed for
them specifically. Biological tests, either as part of the nutritional evaluation in the case of
enzyme inhibitors or more specifically as part of a mycotoxin screening programme, will
provide useful backup evidence concerning the presence or absence of these contaminants.

Finally, if under the intended conditions of use the substance may be unstable or is
likely to interact chemically with other food components (e.g. degradation or rearrangement
of the substance during heat processing), data should be provided on its stability and
reactivity. The various tests should be conducted under conditions relevant to the use of the
substance (e.g. at the acidity and temperature of the environment and in the presence of other
compounds that may react).

9.2.1.2 Nutritional studies
With some substances, particularly novel foods, nutritional studies may be necessary to
predict the likely impact of their introduction on the nutritional status of consumers. In
addition to affecting the nutritional content of the diet, such substances may influence the
biological availability of nutrients in the diet. The nutritional consequences of the
introduction of such a substance in the diet can only be judged in the light of information
about its intended use. Therefore, as much information as possible should be obtained about
potential markets and uses, and the likely maximum consumption by particular
subpopulations should be estimated. It is also possible to check the accuracy or premarketing
predictions by use of post-marketing monitoring studies (see, for example, Allgood et al.,
2001; Hlywka et al., 2003; Amanor-Boadu, 2004; Lea & Hepburn, 2006; Hepburn et al.,
2008; and section 4.3.3).

9.2.1.3 Toxicity studies
When testing high-consumption additives, animals should generally be fed the highest levels
that are consistent with palatability and nutritional status. Therefore, before beginning such
studies, it is desirable to investigate the palatability of the test diet in the test animals. If a
palatability problem is encountered, it may be necessary to increase the amount of the test
substance to the required level gradually. Paired-feeding techniques should be used if the
problem cannot be overcome. It should always be borne in mind that there are practical limits
to the amounts of certain foods that can be added to animal diets without adversely affecting
the animals’ nutrition and health.

To ensure that the nutritional status of the test animal is not distorted, the test and
control diets should have the same nutritive value in terms of both macronutrients (e.g.
protein, fat, carbohydrate and total calories) and micronutrients (e.g. vitamins and minerals).
When feeding substances at high levels, it is usually advisable to formulate diets from
individual ingredients (rather than adding the test material to a standard laboratory diet) to
provide the same nutrient levels in the control and test diets. Comprehensive nutrient analyses
of the test and control diets should be performed to ensure that they are comparable.
Sometimes nutritional studies are advisable before toxicological studies are performed to
ensure that test diets are correctly balanced. Without due regard to nutritional balance,
excessive exposure may mean that a study investigates the adverse effects of long-term
dietary imbalance rather than the toxic effects of the substance.

Metabolic studies are useful and necessary for assessing the safety of high-
consumption additives. With complex mixtures, studies on the metabolic fate of every
constituent would be impractical. However, if contaminants or minor components are
suspected as the cause of toxicity, their metabolism should be investigated. If the material, or
a major component of it, consists of a new chemical compound that does not normally occur
in the diet (e.g. a novel carbohydrate), studies of the metabolic fate of the new compound
would be appropriate.

If biochemical and metabolic studies show that the test material is completely broken
down in the food or in the gastrointestinal tract to substances that are common dietary or
body constituents, then other toxicity studies may not be necessary. The results of metabolic
studies can stand on their own if it is shown that breakdown into these common constituents
occurs under the conditions of normal consumption of the material, that the material
contributes only a small proportion of these common constituents in the daily diet, and that
side reactions giving rise to toxic products do not occur.

Analysis of urine and faeces may provide important information relating to changes in
normal excretory functions caused by the test substance. For example, the gut flora may be
altered or preferential loss of a mineral or vitamin may occur, resulting in detrimental effects
on the health of the test animals. If the substance is incompletely or not degraded by the
digestive enzymes of the stomach or the small intestine, appreciable concentrations may be
found in the faeces or in the distal gut compartments. Such substances may also induce
laxation. As a result, changes in the absorption of dietary constituents or changes in the
composition and metabolic activity of the intestinal flora may be observed. Because of
anatomical differences in the digestive tract and because of considerable differences in the
composition of the basal diet, such effects may occur only in humans but not in rodents, or
vice versa. Therefore, short-term studies should be performed in animals and humans (if possible; see section 4.11) in which variables likely to be affected by the test compound are examined in detail. It is especially important to investigate questions relating to whether the eventual effects are progressive or transient and whether they occur in subjects exposed to the compound for the first time and/or in subjects adapted to a daily intake of the substance. Clearly, no standard design for such studies can be devised. Only a thorough knowledge of the nutritional and biochemical literature can serve as a guideline.

Separate toxicological tests should be performed on toxicologically suspect impurities or minor components present in the test material. If any observed toxicity can be attributed to one of the impurities or minor components, its maximum level should be established in the specification.

Because of the relative non-toxicity of high-consumption additives, toxicity tests in animals may not show any adverse effects even at the highest dose tested. When establishing an ADI, the traditional concept of utilizing a 100-fold safety factor is often not possible if the human consumption level is high and feeding studies do not produce adverse effects. In such cases, new approaches are indicated. It may be possible, for example, to establish a large safety margin between the highest dose tested and the expected consumption of such substances by humans. Or the ADI may be set on the basis of a smaller safety factor, which may be permissible when aspects such as similarity to traditional foods, metabolism into normal body constituents, lack of overt toxicity, etc., are considered. For a compound, such as a bulking agent, that may influence the nutritional balance or the digestive physiology by its mere bulk and which may be absorbed from the gut only incompletely or not at all, it may be more appropriate to consider the dose level in terms of the percentage inclusion in the diet. If several similar types of compounds are likely to be consumed, a group ADI (limiting the cumulative intake) should be allocated.

The results of human studies, which are discussed in relation to novel foods in section 9.2.3, may allow the use of a lower safety factor than that obtained from animal studies.

9.2.2 Nutrients and related substances

The increased use of fortified foods, dietary/food supplements, specially formulated foods and so-called “functional foods” has increased the intake of nutrient substances around the world. In turn, there has been growing interest in an international basis for determining the levels of intake that may pose risk. JECFA has evaluated the safety of several substances that were claimed to have nutritional or health benefits. The sixty-third JECFA noted that whether such products meet appropriate definitions as nutrients or are worthy of health, nutrient or other claims was outside its remit (WHO, 2005). Therefore, JECFA reiterated that it would evaluate only the safety of these ingredients and expressed the view that its evaluation of the safety of these ingredients should not be interpreted to mean that the Committee endorses the use of these substances for their claimed nutritional or health benefits.

JECFA has assigned ADIs for several nutrients or determined “no safety concern” under the proposed conditions of use (e.g. L-5-methyltetrahydrofolic acid; WHO, 2006).

In the risk assessment for non-nutrients, it is assumed that:

• the substance has no desirable or essential physiological roles;
• homeostatic mechanisms for the specific substance do not exist and/or detoxification pathways are not likely to be chemical specific; and
• there are no health risks if the intake is zero.

Unlike non-nutrients, nutrient substances are biologically essential or have a demonstrated favourable impact on health at specified levels of intake. This consideration
influences approaches used to adjust for uncertainty associated with the data used to estimate
a health-based guidance value, such as an upper level of intake, and also necessitates that the
homeostatic mechanisms specific to essential nutrient substances be taken into account.
Therefore, modifications to the classic non-nutrient risk assessment approach are needed.

The relationship between intake and risk for nutrient substances is illustrated in Figure
9.3. For most essential nutrients, homeostatic mechanisms are associated with both low and
high levels of intake that maintain the amount of nutrient substance in the body within a
physiological range. Should intakes increase or decrease, it is assumed that homeostatic
responses of some type occur and that the responses may vary by age/sex/life stage.
However, homeostatic adaptations have a limited capacity and can be overwhelmed by
excessive intake. At the extremes, as the capacity of a homeostatic mechanism is exceeded,
the incidence and/or impact of specific adverse health effects is likely to increase. Nutrient
substances that are not established as essential may also show dual curves, with the left-hand
curve reflecting the failure to optimize health. The distinctions between essentiality and a
demonstrated favourable health impact require further elucidation and clarification as data
evolve.

Figure 9.3. Dual curves for risk relationship of nutrients: Percentage of (sub)population at risk
of “deficiency” and then “adverse health effects” as intakes move from low to high (modified
from IPCS, 2002).

Several international working groups have provided guidance for the risk assessment
of nutrients and related substances (IPCS, 2002; Renwick et al., 2003, 2004; FAO/WHO,
2006).

For the safety evaluation of nutrients and related substances, these groups
recommended the use of the guidance value of upper level of intake (UL), which is defined as
the maximum level of habitual intake from all sources of a nutrient or related substance
judged to be unlikely to lead to adverse health effects in humans.

The UL is not a recommended level of intake but an estimate of the highest level of
regular intake that carries no appreciable risk of adverse health effects (criteria for setting a
UL are discussed in section 9.2.2.2). As with all health-based guidance values, exceeding the
UL is not in itself an indication of risk, but the UL does not give any indication of the
magnitude of risk that may be associated with intakes in excess of the UL.

Where possible, ULs should be established that apply to all groups of the general
population, including all life stages. A generally applicable UL can be used with data from
intake assessments to identify those individuals or population groups potentially at risk and
the circumstances in which harm is likely to occur. However, ULs for nutrients may vary
with age or for specific groups (e.g. sex and life stage, including pregnancy) because of
different balances between requirements and sensitivities to adverse effects. The WHO
review of the principles and methods for the assessment of risk from essential trace elements
pointed out age-related factors associated with variable responses to levels of intake (IPCS,
2002). The FAO/WHO Technical Workshop (FAO/WHO, 2006) concluded that the most
appropriate approach is to develop separate ULs for age/sex/life stage subpopulations. As the
data allow, the ULs can be based on different end-points as applicable to the sensitivity of the
subpopulation.

The appropriateness of a UL established for adequately nourished (sub)populations
cannot be assumed to transfer to inadequately nourished (sub)populations. For example, an
intake well above the UL may be recommended clinically to correct a deficiency. Although
the basic process of nutrient risk assessment decision-making would remain the same
regardless of the nutritional status of the (sub)population of interest, it is likely that
inadequately nourished (sub)populations would need a different set of ULs because of important differences in metabolism and the vulnerability that can result from these differences. However, it should be noted that too little is known about the effects of inadequate nutrition on the absorption, distribution, metabolism and elimination of nutrient substances to allow specification of considerations relevant to adjusting ULs to make them appropriate for inadequately nourished (sub)populations.

The UL is not meant to apply to individuals receiving the nutrient under medical supervision or to individuals with predisposing conditions that render them especially sensitive to one or more adverse affects of the nutrient (e.g. those with genetic predisposition or certain metabolic disorders or disease states).

For some nutrient substances, no credible evidence has demonstrated adverse health effects even at the highest intake used or observed. Vitamin B12 is an example of such a nutrient substance (IOM, 1998). In such cases, the biological threshold for an adverse health effect, if it exists, may be many times higher than the highest intake studied. Lacking data, however, this amount is not known. If no studies have revealed adverse health effects for a nutrient substance but the risk manager needs scientific advice concerning an upper intake, the FAO/WHO Technical Workshop (FAO/WHO, 2006) recommended that the highest observed intake (HOI) be used to give guidance. The HOI is defined as the highest level of intake observed or administered as reported within a study of acceptable quality. It is derived only when no adverse health effects have been identified.

There are some special considerations for the risk characterization of micronutrients and macronutrients (Renwick et al., 2003). Micronutrients are vitamins and minerals that are essential for normal growth and physiological and biochemical functioning. Macronutrients include dietary lipids, proteins and carbohydrates, as well as their subcomponents and substitutes. In addition to those substances currently considered as macronutrients, these considerations can also be appropriate for the risk characterization of new substances, including dietary supplements and functional foods. Decision-trees for the risk characterization of micronutrients and macronutrients are given in Figures 9.4 and 9.5, respectively. These are not intended to cover all eventualities but indicate some matters of particular concern.

9.2.2.1 Adverse health effects of nutrients and related substances—general concepts

The general concepts concerning adverse health effects of nutrients have been described by Renwick et al. (2004). An adverse health effect has been defined as any impairment of a physiologically important function that could lead to an adverse health effect in humans (IOM, 1998) and as any change in morphology, physiology, growth, development or life span of an organism that results in impairment of functional capacity or impairment of capacity to compensate for additional stress or increase in susceptibility to the harmful effects of other environmental influences (IPCS, 2004). Indicators of adverse health effects, which may be used for the derivation of the UL, range from biochemical changes without adverse health effects through to irreversible pathological changes in the functioning of the organism (Figure
In practice, because of limited availability of data on adverse effects in humans, and since biochemical indicators of adverse effects are often not available, adverse effects selected for establishing ULs may cover the full range indicated in Figure 9.6, including clinical outcomes.

There is an established paradigm for determining safe intakes of foreign compounds, such as food additives, based on the dose–response relationship for adverse effects in animals or humans (see Edler et al., 2002 and chapter 5). For most types of toxicity, from either foreign compounds or nutrients, there is believed to be a threshold dose (or intake) below which adverse health effects are not produced. Thresholds for any given adverse effect vary among members of the population. In general, there are insufficient data to establish the distribution of thresholds within the population for individual adverse effects, and uncertainty factors are used to allow for human variability (and for species differences when necessary) (Edler et al., 2002).

1. Biochemical changes within the homeostatic range and without indication of adverse sequelae

2. Biochemical changes outside the homeostatic range without known sequelae

3. Biochemical changes outside the homeostatic range that represent a biomarker of potential adverse effects due to excess

4. Clinical features indicative of a minor but reversible change

5. Clinical features of significant but reversible effects

6. Clinical features indicative of significant but reversible organ damage

7. Clinical features indicative of irreversible organ damage.

Figure 9.6. Identifying adverse health effects: Sequence of “effects” in increasing order of severity (adapted from Renwick et al., 2004; “features” includes signs and symptoms)

Steps 4 through 7 represent adverse health effects manifesting specific clinical features such signs and symptoms, and for this reason they can be used readily for risk assessment in the usual manner. However, some of the effects that occur prior to step 4 could constitute appropriate “biomarkers”. Because such effects can reflect “critical events”, they could serve as surrogates or biomarkers for adverse health effects. However, it should be noted that biochemical effects without functional significance should not be regarded as adverse health effects (IPCS, 2002).

The following criteria have been proposed for the use of these indicators of adverse health effects (FAO/WHO, 2006):

- The optimal end-point for use in setting a UL would be an effect at step 3 and possibly step 2, with steps 4–7 reflective of clinical features such as signs or symptoms. Step 2 may be applicable in some cases in which sufficient information is available to suggest that changes outside a homeostatic range that occur without known sequelae would be relevant as a surrogate for an adverse health effect.
- The increased use of valid, causally associated biomarkers as surrogates for adverse health effects is desirable for the purposes of nutrient risk assessment. After identifying
the sequence of observable effects in the causal pathway for adverse health effects—from
initial non-specific biochemical changes to clear clinical outcomes—if the biomarker
meets other relevant criteria, including causal association, biochemical changes outside
the homeostatic range can be relevant surrogates for adverse health effects associated
with nutrient substances.

9.2.2.2 Deriving the UL
The UL can be derived for nutrients using the principles of risk assessment similar to those
that have been developed for biological and chemical agents. A pivotal point in the
assessment process is the selection of the critical adverse health effect. This is the effect upon
which the UL is based—or, more specifically, the effect upon which a set of ULs for the
various age/sex/life stage subpopulations is based. The critical adverse health effect is usually
the effect that occurs at the lowest level of excessive intake within the (sub)population of
interest, or at the lowest experimental dose if only animal data are available. For a given
nutrient substance, different critical adverse health effects may be selected for the different
age/sex/life stage subpopulations, because metabolic and physiological differences among
these subpopulations mean that adverse health effects may manifest differently. Issues related
to the physiological severity of the adverse health effect are considered separately rather than
as a component of selecting the critical adverse health effect (FAO/WHO, 2006).

Once the critical adverse health effect is identified, the process moves to deriving the
UL. Again, iterations may occur between this activity and those conducted under hazard
identification. The first step is to analyse and describe clearly the relationship between the
intake of the nutrient substance and the onset of the adverse health effect for those
age/sex/life stage subpopulations for which data are available. The analysis (see also chapter
5) is called the intake–response assessment, and its outcome is the determination of one or
more of the following three values, depending upon the nature of the existing evidence:

1) a BMD (or benchmark intake [BI]): the intake of a substance that is expected to result in a
prespecified level of effect (the BMR; see chapter 5);
2) a NOAEL: the greatest concentration or amount of a substance, found by experiment or
observation, that causes no detectable adverse alteration of morphology, functional
capacity, growth, development or life span of the target organism under defined
conditions of exposure (IPCS, 1994); or
3) a LOAEL: the lowest concentration or amount of a substance, found by experiment or
observation, that causes a detectable adverse alteration of morphology, functional
capacity, growth, development or life span of the target organism under defined
conditions of exposure (IPCS, 1994).

The NOAEL and LOAEL are based on observed intake levels that are set as part of
the study design. Neither takes into account the shape of the intake–response relationship that
would be seen at other levels of intake. If data allow, the specification of a BMD (BI) permits
the derivation of the ULs to be carried out with greater certainty. In any case, any of the three
values can serve as the starting point for deriving the UL. The BMD (BI) approach can be
particularly useful when the adverse health effect is seen within the range of the current
levels of human intake and a NOAEL cannot be identified. This would apply to sodium, for
example. Under such circumstances, the BMD (BI or lower confidence limit on the BI, or
BIL) is useful because it defines a point on the intake–response relationship that is reliable
and relevant to the minimization of the risk of adverse health effects that result from high
intake.
Overall, the data sets available for nutrient substances usually are not designed to assess intake–response for adverse health effects. Therefore, not only is the estimation of a BMD (BI) problematic, there are challenges associated with establishing the NOAEL or LOAEL. In addition, the uncertainties and limitations of the usual data sets could, in most cases, result in a BMDL (see chapter 5) value that was so low that it might lead to nutritional inadequacy. Study quality and design for both human and animal data are notable issues for the NOAEL (or LOAEL), and they should be considered carefully. Several “study-dependent” factors that influence the magnitude of the value observed include the group size, the sensitivity of the methods used to measure the response, the duration of intake and the selection of intake levels. For animal studies, important factors include species, strain, sex, age and developmental status.

The NOAEL or LOAEL cannot be used as the final value for the UL—except in the unlikely situation that the value was derived from a large study that is truly representative of the exposed population and contains no uncertainties and negligible errors. Given that available data will usually contain uncertainties, risk assessment principles stipulate that the risk assessor must take these into account. Therefore, an allowance is made for these uncertainties by establishing a UL at some value less than the NOAEL or LOAEL. A similar allowance would need to be made if a BMD (BI) were to be used, but only the NOAEL and LOAEL were discussed at the FAO/WHO Technical Workshop (FAO/WHO, 2006).

Following the identification of a NOAEL, LOAEL or BMD (BI), allowances for uncertainty must be made in order to establish a UL. If needed, this is followed by scaling or extrapolating data to derive ULs for those age/sex/life stage subpopulations for which no data are available. If available data allow, a quantitative allowance for uncertainties may be applied to the NOAEL/LOAEL/BMD (BI) value derived from the intake–response assessment. The first consideration is whether there are sufficient data to make a quantitative allowance for uncertainty: that is, do the data allow the magnitude of uncertainty or variability to be defined? This consideration is equivalent to the determination of a CSAF for a non-nutrient substance (section 4.4.2.6). Quantitative allowances are data-derived factors that can be applied to the NOAEL or LOAEL to derive a lower (or sometimes higher) health-based guidance value (a UL), based on information relevant to the target population but not addressed in the data used to derive the values. These adjustments are objective and based on specific data, and they can relate to either kinetic or dynamic aspects of the nutrient substance in different species (IPCS, 1994). While quantitative allowances are theoretically possible for all uncertainties, in practice available data usually allow relatively few quantitative allowances to be made when setting the ULs for nutrient substances. One example of the use of quantitative allowances is the process used to address differences in body size between test animals and humans. Bioavailability is another uncertainty for which quantitative allowances may be used, particularly when data are available for different forms of the same nutrient substance. This allowance could, in principle, lead to setting different ULs for different forms of the nutrient substance—for example, the nicotinic acid and nicotinamide forms of niacin.

Generally, however, allowances for uncertainty must make use of uncertainty factors. Application of the default uncertainty factors that are used for non-nutrient substances poses a potential problem for nutrient substances: the resulting UL could be a value that is below the intake required to ensure nutritional adequacy. This issue arises primarily for those nutrient substances that have recommended intakes that are relatively close to intake levels that may pose a risk; examples commonly quoted include iron, zinc, copper and sometimes calcium. It is now widely recognized that the use of large generic default factors are not usually applicable to nutrient risk assessment. Instead, uncertainty factors used in nutrient risk assessment require consideration on a case-by-case basis and must be placed within the context of established intake requirements.
The FAO/WHO Technical Workshop (FAO/WHO, 2006) concluded that it is preferable to develop a single composite uncertainty factor rather than to apply separate uncertainty factors for different issues. The single composite factor for uncertainty is applied to the NOAEL or LOAEL after any available quantitative allowances have been made. Because the risk assessment of nutrient substances has to consider both toxicity and essentiality, the use of a composite factor increases the likelihood that the final value will not be so large as to result in a UL that is lower than the required intake of the nutrient substance. The impact of uncertainty considerations related to the toxicity data must be checked against the level of recommended intake for biological essentiality or for normal health. After uncertainties are taken into account, the resulting value is the UL for the specified subpopulation. When data are insufficient for setting a UL for one or more age/sex/life stage subpopulations (as often is the case), the gap is filled by adjusting a UL that has been established for another subpopulation. Therefore, although it is desirable to establish ULs based on data and end-points, such as differences in the metabolism, homeostatic mechanisms and toxicokinetics between children and adults, in the absence of such data, appropriate scaling is needed. Adjusting or “scaling” an adult UL into a UL relevant to children may be undertaken by correction using:

- the quantified reference body weight established for the age group;
- body surface area, which is calculated using the reference body weight taken to the power of 0.66 (i.e. BW^{0.66}); or
- energy requirement, which is sometimes referred to as metabolic body weight and is calculated using the reference body weight taken to the power of 0.75 (i.e. BW^{0.75}).

Because nutrient substances usually are components of normal intermediary metabolism, scaling on the basis of either surface area (i.e. BW^{0.66}) or energy requirement (i.e. BW^{0.75}) is likely to be more appropriate.

Quantitative data on the dietary intake of a nutrient substance by the (sub)population of interest is required to estimate the proportion of the (sub)population that is likely to exceed the UL. Data on the basis for derivation of the UL and other information gleaned from hazard identification/characterization are essential for describing the risk associated with intake above the UL.

There are several special considerations for the intake assessment for nutrients and related substances. The exposure/intake assessment is population rather than globally relevant. That is, it is dependent on the types of foods and supplements consumed and on dietary patterns within a region or nation-state. This means that risk characterizations can be inherently different depending upon the target population. This difference holds true even when the derivation of the UL is conducted in a consistent manner using internationally applicable guiding principles. There are wide variations in data types used for dietary intake assessment and in the methods of analysis and presentation of the findings. The FAO/WHO Technical Workshop reviewed in detail the approaches to nutrient intake assessment and proposed harmonized protocols to improve these data (FAO/WHO, 2006).

9.2.3 Novel foods

Developments have made possible the production of foods from unconventional sources (e.g. fungal mycelia and yeast cells). In addition, so-called “exotic” fruits and vegetables are being introduced from their region of origin to other regions. Foods that are well known and traditional in one country or region may be unknown and thereby novel in another country or region.
These foods are intended for consumption, either directly or after simple physical modification to provide a more acceptable product. They may be consumed in large amounts, even by infants and children, particularly if they are permitted for use as protein supplements in otherwise protein-deficient diets.

While the definition of what constitutes a novel food is basically a risk management decision, the following working definitions have been proposed (adopted in part from Knudsen et al., 2005 and IPCS, 1987):

- **History of safe use for a food**: Term used for the qualified presumption of safety. There is evidence for the safety of the food from compositional data and from experience since the food has been an ongoing part of the diet for a number of generations in a large, genetically diverse population. This presumption is for a certain context of use (conditions of use, defined part of the plant used and required processing) and allows for minor population predispositions, such as intolerance and allergenicity.

- **Traditional foods**: Foods that have a history of significant human consumption by the broad community for several generations as part of the ordinary diet at the global, regional or local level or as a part of an ethnic diet.

- **Non-traditional foods**: Foods that do not have a history of significant human consumption by the broad community for several generations as part of the ordinary diet.

- **Novel foods**: Non-traditional foods for which there is insufficient knowledge in the broad community to ensure safe use, or which have characteristics that raise safety concerns due to composition, levels of undesirable substances, potential for adverse effects, traditional preparation and cooking, and patterns and levels of consumption. These include food or food ingredients produced from raw materials not normally used for human consumption or food that is severely modified by the introduction of new processes not previously used in the production of food.

- **Foods for special dietary uses**: Those foods that are specially processed or formulated to satisfy particular dietary requirements that exist because of a particular physical or physiological condition and/or specific diseases and disorders and which are presented as such. This includes foods for infants and young children. The composition of these foodstuffs must differ significantly from the composition of ordinary foods of comparable nature, if such ordinary foods exist.

A decision-tree for points to consider in the evaluation of whole foods has been proposed by Renwick et al. (2003) and is shown in Figure 9.7.

Figure 9.7. Decision-tree outlining the special considerations for the risk characterization of whole foods (Renwick et al., 2003)

9.2.3.1 Chemical composition

Complete chemical identification of whole foods may not be feasible, but specifications are necessary to ensure that levels of potentially hazardous contaminants, such as mycotoxins and heavy metals or other substances of concern, are kept to a minimum. Toxicological evaluations must be closely related to well defined materials, and evaluations may not be valid for all preparations from the same source material, if different processing methods are used.
9.2.3.2 Nutritional considerations

When a novel food is intended to replace a significant portion of traditional food in the diet, its likely impact on the nutritional status of consumers requires special consideration. The influence of the introduction of the new substance on the nutrient composition of the diet as a whole should be identified, particularly with respect to groups such as children, the elderly and “captive populations” (e.g. hospital patients and school children). In order not to adversely affect the nutritional quality of the diet, it may be necessary to fortify the substance with vitamins, minerals or other nutrients.

The nutritional value of the novel food should be assessed initially from its chemical composition with respect to both macronutrients and micronutrients, taking into account the effects of any further processing and storage. The possible influence of components in the novel food, such as antinutritional factors (e.g. inhibitors of enzyme activity or mineral metabolism), on the nutritional value or keeping quality of the remainder of the diet should also be established.

9.2.3.3 Toxicological evaluations

Depending on the nature and intended uses of the novel food, studies in animals may be needed to supplement the chemical studies. If the novel food is intended to be an alternative significant supply of protein, tests on its protein quality will be necessary. In vivo studies will also be needed when it is appropriate to determine 1) the availability of vitamins and minerals in the novel food in comparison with the food it would replace and 2) any interaction the novel food might have with other items of the diet that would reduce the whole diet’s nutritional value. If the novel food is expected to play an important role in the diet, it may be necessary to verify that the results of animal studies can be extrapolated to human beings by measuring the availability of nutrients to human subjects.

In most cases, novel foods constitute a large percentage of the daily diet in animal studies because they are of a non-toxic nature. Therefore, the considerations discussed in section 9.2.1.3 apply to the toxicological testing and evaluation of foods from novel sources.

9.2.3.4 Human data

The general principles of studies in humans have been set out in section 4.11. Human studies on novel foods need to be designed on a case-by-case basis. Human studies should not be embarked upon until there has been a full appraisal of the safety of the novel food, using all available data (e.g. history of safe use, data on chemical and microbiological impurities, composition and toxicology). After the launch of a novel food on the market, post-marketing surveillance studies may also be helpful in providing confirmation of anticipated usage patterns and exposure levels. It may be necessary to conduct allergenicity studies on the novel food because of its composition (e.g. if it is highly proteinaceous) or because the results of animal or human feeding studies suggest that the food might produce hypersensitivity in some people. Important information can be gained by monitoring the health of workers coming into contact with the novel food, such as laboratory staff and employees in the manufacturing plant. It is not realistic to strive for absolute absence of risk for allergenicity, and aim of any study should be to ensure that a novel food is at least as safe as its traditional counterpart (i.e. the food that it will substitute in the diet).

9.2.3.5 History of safe use

Human experience, but normally not formal human scientific studies, is an essential part of the data collection in the history of use. The human experience on the consumption of a certain food in a region different from the one that has deemed the food to be novel is normally just an empirical observation that the food in question has been eaten for
generations in that region. It will normally be coupled with information on how it is prepared, how it is eaten and how much, and whether the food in question has had any special claims linked to it. This kind of information is often anecdotal and not scientifically well documented and is a history of “use”; however, owing to the absence of health measurements, it is not a history of “safe use”.

The following information can be considered for a history of safe use (adapted from Health Canada, 2006):

- Historical evidence indicating ongoing, frequent consumption by a cross-section of the population where it has been used over several generations. This evidence may be derived from various sources, including, but not limited to, scientific publications and patents, non-scientific publications and books, cookbooks, books on the history of food culture and/or affidavits from two or more independent, reputable authorities that include well documented accounts of the way the food is used and how they know it has the history it does. Limited usage or short-term exposure would not be adequate to demonstrate a history of safe use.
- A declaration of any possible adverse effects linked to the food documented in its country of origin and/or a country where there is a high degree of consumption.
- A description of the standard methods of commercial and/or domestic processing and preparation for consumption.
- A description of how the food is cultivated or (if from wild sources) harvested.
- Amounts of the food that people are likely to consume, including typical serving sizes and expected frequency of consumption, at both average and extreme high consumption levels.
- Analysis of the composition of the food based on randomly selected, statistically valid samples. This analysis should include proximate data as well as amino acid profile, fatty acid profile, mineral and trace mineral composition and vitamin composition, as well as any nutrients, antinutrients and bioactive phytochemicals known to be of particular interest in the product. The analysis should pay special attention to the presence of compounds in the food that may have implications for the health of any subgroups of the population (e.g. possible toxicants or allergens or unusually high levels of nutrients in the food source or final food product).
- Metabolism and/or gastrointestinal effects in humans.

9.2.3.6 Exposure assessment

For novel foods, exposure will need to be estimated from proposed uses. For many novel foods, accurate prediction of the likely commercial success, and therefore intakes, is particularly difficult. Therefore, post-launch monitoring can be essential to verify that the risk characterization was appropriate to the exposure. Information on the intended or anticipated use(s) of the novel food is essential for the assessment of whether the use(s) will be safe or constitute a risk. For exotic fruits and vegetables, experience from the region from which they originate can provide helpful information; consumption patterns must be considered in the local context of the novel use proposed. A food traditionally consumed only occasionally or exclusively in combination with another material may cause problems when consumed in larger quantities or in a different combination.

The exposure assessment should also consider the appropriate ways of preparing and cooking the novel plant food. Some are to be eaten raw; some are to be milled to flour and go through baking processes; some are to be peeled and cooked; some are to be extracted, treated with acids or bases, dried and fried. All these processes greatly influence the contents
and digestive availability of inherent toxicants, macro- and micronutrients of the individual novel food as assessed in the hazard characterization.

9.2.3.7 Risk characterization
For the risk characterization of novel foods, the MOE approach may be suitable. This is calculated from the estimated daily safe intake divided by the likely human daily exposure. This value can then be used by the risk managers to guide the further decisions on the use of the novel plant food in the general food supply, and—if properly indicated at the food—by the individual consumer to guide his/her choice for proper food that meets the individual expectations and needs.

9.3 Scientific criteria for periodic reviews and re-evaluations of chemicals in food

9.3.1 The need for periodic reviews and specific re-evaluations
JECFA and JMPR have indicated that it may be necessary to carry out periodic reviews of substances they have previously assessed. When new information appears on a specific substance, it may also be necessary to carry out a specific re-evaluation of that substance.

The first JECFA meeting, in looking ahead, envisaged, in addition to the continuing evaluation of food additives, that there would be a re-evaluation process associated with the programme on food additive safety assessment (FAO/WHO, 1957). It stated:

Permitted additives should be subjected to continuing observation for possible deleterious effects under changing conditions of use. They should be reappraised whenever indicated by advances in knowledge. Special recognition in such reappraisals should be given to improvements in toxicological methodology.

This principle was endorsed in the third (FAO/WHO, 1962a), seventh (FAO/WHO, 1964a), eighth (FAO/WHO, 1965a) and ninth reports (FAO/WHO, 1966) of JECFA.

The “need for review of past recommendations” was highlighted in the thirteenth JECFA report as follows (FAO/WHO, 1970, p. 22):

There is a widespread but fallacious belief that clearance of an additive for use in food constitutes an irrevocable decision. Such a view renders a grave disservice to the cause of consumer protection for it fails to recognize the need for regular review of all safety evaluations.

For many additives, the assessment may not have been conducted using the more recently adopted procedures for investigating intentional and unintentional food additives. A review of past decisions also reveals that some additives have had only a cursory examination. The evaluation of these additives may have been based on limited data.

In 1961, the Meeting on Consumer Safety in Relation to Pesticide Residues stated that “of necessity early views of the amount (ADI) will be estimated and subject to revision as experience accumulates” (FAO/WHO, 1962b, p. 9). Thus, from its inception, the provisional nature of the ADI has been recognized (FAO/WHO, 1964b). The 1965 Meeting (FAO/WHO, 1965b) re-examined the 37 pesticides reviewed in 1963 (FAO/WHO, 1964b). Changes in the ADIs were instituted for 16 of these pesticides, based on additional information that had become available.

The need for a full re-evaluation of the toxicity database on some pesticides was identified by the 1981 JMPR (FAO/WHO, 1981a), based on concerns over the validity of previously submitted data. The first of these re-evaluations was undertaken in 1982 (FAO/WHO, 1981b). The development of new methods for investigating toxicity has also
caused concern in relation to pesticides for which ADIs have been established (FAO/WHO, 1974).

Reviews of past decisions on safety regarding food additives, contaminants and residues of pesticides and veterinary drugs may be necessary as a result of one or more of the following developments (FAO/WHO, 1970):

- a new manufacturing process;
- a new specification;
- new data on the biological properties of the compound;
- new data concerning the nature or the biological properties, or both, of the impurities present;
- advances in scientific knowledge germane to the nature or mode of action;
- changes in consumption patterns, levels of use or dietary exposure estimates;
- improved standards of safety evaluation. This is made possible by new scientific knowledge and the quality and quantity of safety data considered necessary in the case of food additives and residues of pesticides and veterinary drugs.

9.3.2 Periodic reviews of the risk assessments for pesticide residues

At the request of the CCPR or national governments, JMPR has always re-examined data supporting ADI estimates and data on residue trials and registered use information supporting MRLs. If the ADI for a pesticide has been established more than about 20 years previously and it has not been evaluated since, it is possible that new data may have become available or that evaluation to updated scientific knowledge would change the result.

In the early 1990s, two developments encouraged a more formal process in the Codex system for ensuring that its pesticide residue standards met contemporary expectations and were not obsolete. First, the United States, European and some other national registration systems had commenced re-registration programmes for their pesticides, where old registrations were re-evaluated to modern data requirement standards. Second, the SPS Agreement refers to Codex standards, including MRLs, as reference standards for international trade, which meant that the Codex system and its procedures were under increased scrutiny.

Because most MRLs are related to registered uses, when a registered use changes or is withdrawn, the remaining MRL may be obsolete. However, it is very difficult to know the registration status throughout the world and whether adequate data are available to support the current or revised MRL or if the MRL should be withdrawn.

The aim of the CCPR Periodic Review Programme was to institute a procedure that gave an adequate opportunity for data submission for required compounds and MRLs while introducing a timetable for ADIs and MRLs to be deleted if no data or inadequate data were provided. A procedure for formal periodic reviews proposed at the 23rd Session of the CCPR (CAC, 1991) was widely endorsed, finally resulting in an agreed procedure at the 25th Session of the CCPR (CAC, 1993). In fact, the first periodic reviews were carried out by JMPR in 1992 following wide discussion of the principles at CCPR in 1991 and 1992.

For pesticides, CCPR has recommended the following criteria for periodic re-evaluation:

- chemicals that have not been reviewed toxicologically for more than 15 years and/or not having a significant review of maximum residue limits;
- the year the chemical is added to the list for CCPR Candidate Chemicals for Periodic Re-evaluation—Not Yet Scheduled;
• the date that data will be submitted;
• if the intake and/or toxicity profile indicate a high level of public health concern;
• whether the CCPR has been advised by a national government that the chemical has been
 responsible for trade disruption;
• if there is a closely related chemical that is a candidate for periodic re-evaluation that can
 be evaluated concurrently; and
• allocating periodic re-evaluation chemicals to be evaluated on a 50:50 basis with new
 chemicals to be evaluated.

Principles of operation of the periodic review are:

• available studies will be evaluated according to modern scientific standards; and
• there will be no reliance on data submissions to FAO and WHO from previous years. For
 a periodic review, all relevant studies should be provided in the dossier for evaluation.

In addition to toxicology and GAP information on registered pesticide uses and
studies on supervised residue trials, the critical information formally required for compounds
undergoing periodic review are data on metabolism in livestock and crops, environmental
fate in soil and water–sediment systems, livestock feeding, food processing, analytical
methods and freezer storage stability for analytical samples.

9.3.3 Mechanisms of periodic reviews and re-evaluations

That a considerable amount of re-evaluation of substances is already carried out within the
system is evident when the year-to-year agendas of JECFA and JMPR are examined. Temporary ADIs
have been allocated by JECFA and JMPR to permit the acceptance of
substances where there are sufficient data to conclude that the use of the substance is safe
over the relatively short period of time required to produce further safety data, but are
insufficient to conclude that the use of the substance is safe over a lifetime. An expiry date is
generally established by which time appropriate data to resolve the safety issue should be
submitted. JECFA, as part of its recommendations in the evaluation of specific contaminants,
often makes requests for additional data and recommendations for subsequent re-evaluation.

Establishing a priority order for the re-evaluation of compounds requires input from a
number of sources. Within the risk analysis paradigm, the system for periodic review,
including the determination of priorities for re-evaluation, is part of risk management; for
JECFA and JMPR, it is the responsibility of FAO, WHO and the CAC, through its
committees. For JECFA, these include primarily the CCFA, CCCF and CCRVDF. For
JMPR, the primary source of input is the CCPR.

The FAO and WHO Joint Secretaries for JECFA and JMPR, as representatives of
their respective organizations, have the final responsibility and authority for the
determination of substances for re-evaluation in their respective areas. This can be dependent
in part on available resources.

In general, re-evaluations are not justified unless there are new data. For most food
additives, pesticides and veterinary drugs, such data are usually supplied by a sponsor. In
many cases, new data for re-evaluations have not been available. Risk management,
including Codex and Member states, has a critical role in making certain the necessary data
for re-evaluation are available.

The following situations are triggers for prioritizing substances for re-evaluation:

• substances for which new data raise suspicion of significant hazard;
• substances for which there is evidence to question the validity of the data submitted for the previous evaluation;
• substances previously allocated a temporary ADI, where the requested additional data are available;
• substances whose re-evaluation has been requested by FAO or WHO; and
• substances whose re-evaluation has been requested by Codex.

9.4 References

Ashby, J.; Tennant, R.W.; Zeiger, E.; and Stasiewicz, S. (1989). Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program. Mutat Res 223(2):73-103.

