OVERVIEW
Bangladesh is one of the most vulnerable countries to extreme weather events mainly due to its vast coastal area, high population density, high poverty rate and reliance on natural resources. Almost 25% of the population live in coastal areas and are likely to be at threat of flooding, storms, sea level rise and tropical cyclones. Current saline intrusion reaches 100 km from the Bay of Bengal impacting agriculture, drinking water and livelihoods. The health sector currently does not have adequate funding, infrastructure, human resource capacity, logistics and services required to fully address the impact of climate change on human health.

SUMMARY OF KEY FINDINGS
• Under a high emissions scenario, mean annual temperature is projected to rise by about 4.8°C on average from 1990 to 2100. If emissions decrease rapidly, the temperature rise is limited to about 1.4°C.
• Under a high emissions scenario, and without large investments in adaptation, an annual average of 7.2 million people are projected to be affected by flooding due to sea level rise between 2070 and 2100. If emissions decrease rapidly and there is a major scale up in protection (i.e. continued construction/raising of dikes) the annual affected population could be limited to about 14,100 people. Adaptation alone will not offer sufficient protection, as sea level rise is a long-term process, with high emissions scenarios bringing increasing impacts well beyond the end of the century.
• By 2070, over 147 million people are projected to be at risk of malaria assuming a high emissions scenario. If emissions decrease rapidly, projections indicate this number could decrease to about 117 million.

• Under a high emissions scenario, it is anticipated that 20.3 million people could be living in cyclone High Risk Areas by 2050 compared to 8.3 million at present.
• Under a high emissions scenario, an additional 7.6 million people could be exposed to very high salinity (>5 parts per thousand) by 2050 compared to current levels.

OPPORTUNITIES FOR ACTION
Bangladesh has conducted national assessments of climate change impacts, vulnerability and adaptation for health and has a national health adaptation strategy. Country reported data [see section 6] indicate there remain opportunities for action in the following areas:

1) Adaptation
• Strengthen adaptive capacity by building climate resilient infrastructure, including health infrastructure.
• Estimate the cost of implementing health resilience to climate change, including allocations from international and domestic funds.

2) Mitigation
• Conduct valuation of co-benefits to health of climate change mitigation policies.

3) National policy implementation
• Develop an exclusive national policy for climate change issues.
• Utilise a Rights Based Approach and take action for mainstreaming gender in climate change policy and programs to address the disproportionate impact of climate change on the health of women and children.

DEMOGRAPHIC ESTIMATES

<table>
<thead>
<tr>
<th>Population (2013)</th>
<th>157 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population growth rate (2013)</td>
<td>1.2%</td>
</tr>
<tr>
<td>Population living in urban areas (2013)</td>
<td>32.8%</td>
</tr>
<tr>
<td>Population under five (2013)</td>
<td>9.8%</td>
</tr>
<tr>
<td>Population aged 65 or older (2013)</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

ECONOMIC AND DEVELOPMENT INDICATORS

GDP per capita (current US$, 2013)	954 USD
Total expenditure on health as % of GDP (2013)	3.7%
Percentage share of income for lowest 20% of population (2010)	8.9%
HDI (2013, +/- 0.01 change from 2005 is indicated with arrow)	0.558 ▲

HEALTH ESTIMATES

| Life expectancy at birth (2013) | 71 years |
| Under-5 mortality per 1000 live births (2013) | 41.6 |
Due to climate change, many climate hazards and extreme weather events, such as heat waves, heavy rainfall and droughts, could become more frequent and more intense in many parts of the world.

Outlined here are country-specific projections up to the year 2100 for climate hazards under a ‘business as usual’ high emissions scenario (in orange) compared to projections under a ‘two-degree’ scenario with rapidly decreasing emissions (in green). Most hazards caused by climate change will persist for many centuries.

The text boxes below describe the projected changes averaged across about 20 models (thick line). The figures also show each model individually as well as the 90% model range (shaded) as a measure of uncertainty and, where available, the annual and smoothed observed record (in blue).

Under a high emissions scenario, mean annual temperature is projected to rise by about 4.8°C on average from 1990 to 2100. If emissions decrease rapidly, the temperature rise is limited to about 1.4°C.

Under a high emissions scenario, the number of days with very heavy precipitation (20 mm or more) could increase by almost 10 days on average from 1990 to 2100, increasing the risk of floods. Some models indicate increases outside the range of historical variability, implying even greater risk. If emissions decrease rapidly, the risk is much reduced.

Under a high emissions scenario, the longest dry spell could increase from about 70 days in 1990 to about 85 days on average in 2100, suggesting slightly greater persistence of droughts, with continuing large year-to-year variability. If emissions decrease rapidly, there are no anticipated changes in the length of dry spells.

a Model projections are from CMIP5 for RCP8.5 [high emissions] and RCP2.6 [low emissions]. Model anomalies are added to the historical mean and smoothed.

b Observed historical record of mean temperature is from CRU-Tsv.3.22; observed historical records of extremes are from HadEX2.

c Analysis by the Climatic Research Unit and Tyndall Centre for Climate Change Research, University of East Anglia, 2015.

d A ‘warm spell’ day is a day when maximum temperature, together with that of at least the 6 consecutive previous days, exceeds the 90th percentile threshold for that time of the year.
Human health is profoundly affected by weather and climate. Climate change threatens to exacerbate today’s health problems - deaths from extreme weather events, cardiovascular and respiratory diseases, infectious diseases and malnutrition - whilst undermining water and food supplies, infrastructure, health systems and social protection systems.

EXPOSURE TO FLOODING DUE TO SEA LEVEL RISE

<table>
<thead>
<tr>
<th>Scenario</th>
<th>RCP2.6</th>
<th>RCP8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Adaptation</td>
<td>2,598,400</td>
<td>7,226,600</td>
</tr>
<tr>
<td>With Adaptation</td>
<td>14,100</td>
<td>21,600</td>
</tr>
</tbody>
</table>

* Medium ice melting scenario
** Values rounded to nearest ‘00

Under a high emissions scenario, and without large investments in adaptation, an annual average of 7.2 million people are projected to be affected by flooding due to sea level rise between 2070 and 2100. If emissions decrease rapidly and there is a major scale up in protection (i.e. continued construction/raising of dikes) the annual affected population could be limited to about 14,100 people. Adaptation alone will not offer sufficient protection, as sea level rise is a long-term process, with high emissions scenarios bringing increasing impacts well beyond the end of the century.

INFECTION AND VECTOR-BORNE DISEASES

Mean relative vectorial capacity for dengue fever transmission

Although the mean relative vectorial capacity for dengue fever transmission is projected to decline from the baseline period, it remains at a relatively high endemic transmission level towards 2070. Co-factors such as urbanization, development and population movements may modify the disease burdens associated with dengue, and make the disease cross new sub-national borders.

Source: Rocklov, J., Quam, M. et al., 2015

a World Resources Institute, Aqueduct Flood Analyser; Assumes continued current socio-economic development trends (SSP2) and a 10-year flood plan.
d Country-level analysis, completed in 2015, was based on health models outlined in the Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. Geneva: World Health Organization, 2014.

KEY IMPLICATIONS FOR HEALTH

Bangladesh also faces inland river flood risk due to climate change. Under a high emissions scenario, it is projected that by 2030, 4.2 million additional people may be at risk of river floods annually due to climate change and 2.2 million due to socio-economic change above the estimated 3.5 million annually affected population in 2010. In addition to deaths from drowning, flooding causes extensive indirect health effects, including impacts on food production, water provision, ecosystem disruption, infectious disease outbreak and vector distribution. Longer term effects of flooding may include post-traumatic stress and population displacement.

Some of the world's most virulent infections are also highly sensitive to climate: temperature, precipitation and humidity have a strong influence on the life-cycles of the vectors and the infectious agents they carry and influence the transmission of water and food-borne diseases.

Socioeconomic development and health interventions are driving down burdens of several infectious diseases, and these projections assume that this will continue. However, climate conditions are projected to become significantly more favourable for transmission, slowing progress in reducing burdens, and increasing the populations at risk if control measures are not maintained or strengthened.

For example, in the baseline year of 2008 there were an estimated 25,500 diarrhoeal deaths in children under 15 years old. Under a high emissions scenario, diarrhoeal deaths attributable to climate change in children under 15 years old are projected to be about 8.5% of the over 4,000 diarrhoeal deaths projected in 2030. Although diarrhoeal deaths are projected to decline to just under 900 by 2050 the proportion of deaths attributable to climate change could rise to about 13.2% as the climate warms. [Source: Lloyd, S., 2015].

[1900 1950 2000 2050 2100]
KEY IMPLICATIONS FOR HEALTH

Climate change is expected to increase mean annual temperature and the intensity and frequency of heat waves resulting in a greater number of people at risk of heat-related medical conditions.

The elderly, children, the chronically ill, the socially isolated and at risk occupational groups are particularly vulnerable to heat-related conditions.

Under a high emissions scenario heat-related deaths in the elderly (65+ years) are projected to increase to almost 30 deaths per 100,000 by 2080 compared to the estimated baseline of under 4 deaths per 100,000 annually between 1961 and 1990. A rapid reduction in emissions could limit heat-related deaths in the elderly to just over 7 deaths per 100,000 in 2080.

Source: Honda et al., 2015.

Labour productivity is projected to decline significantly under a high emissions scenario. If global mean temperature rises 4 degrees, about 28% of annual daily work hours is projected to be lost by workers carrying out heavy labour (e.g. agricultural, construction and some industrial workers).

Source: Kjellstrom, T. et al., 2015
http://www.climatechip.org/

UNDERNUTRITION

Climate change, through higher temperatures, land and water scarcity, flooding, drought and displacement, negatively impacts agricultural production and causes breakdown in food systems. These disproportionately affect those most vulnerable to hunger and can lead to food insecurity. Vulnerable groups risk further deterioration into food and nutrition crises if exposed to extreme weather events.

Without considerable efforts made to improve climate resilience, it has been estimated that the risk of hunger and malnutrition globally could increase by up to 20 percent by 2050.

In Bangladesh, the prevalence of child malnutrition in children under age 5 is 31.9% (2013).

a Country-level analysis, completed in 2015, was based on health models outlined in the Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. Geneva: World Health Organization, 2014.

b World Food Project 2015 https://www.wfp.org/content/two-minutes-climate-change-and-hunger

c World Health Organization. Global Database on Child Growth and Malnutrition [2015 edition]. Child malnutrition estimates are for % underweight, defined as: Percentage of children aged 0–59 months who are below minus two standard deviations from median weight-for-age of the World Health Organization (WHO) Child Growth Standards.
CURRENT EXPOSURES AND HEALTH RISKS DUE TO AIR POLLUTION

Many of the drivers of climate change, such as inefficient and polluting forms of energy and transport systems, also contribute to air pollution. Air pollution is now one of the largest global health risks, causing approximately seven million deaths every year. There is an important opportunity to promote policies that both protect the climate at a global level, and also have large and immediate health benefits at a local level.

OUTDOOR AIR POLLUTION EXPOSURE

Outdoor air pollution can have direct and sometimes severe consequences for health. Fine particles which penetrate deep into the respiratory tract subsequently increase mortality from respiratory infections, lung cancer, and cardiovascular disease.

KEY IMPLICATIONS FOR HEALTH

Outdoor air pollution can have direct and sometimes severe consequences for health. Fine particles which penetrate deep into the respiratory tract subsequently increase mortality from respiratory infections, lung cancer, and cardiovascular disease.

The five most populated cities for which there is air pollution data available have annual mean PM$_{2.5}$ levels that are above the WHO guideline value of 10 µg/m3.

Source: Ambient Air Pollution Database, WHO, May 2014.

HOUSEHOLD AIR POLLUTION

BANGLADESH

Percentage of population primarily using solid fuels for cooking (%), 2013

Percent of total deaths from ischaemic heart disease, stroke, lung cancer, chronic obstructive pulmonary disease (18 years +) and acute lower respiratory infections (under 5 years) attributable to household air pollution, 2012

Total Deaths: 192,400

[44%]

Attributable to household air pollution

Source: Global Health Observatory, data repository, World Health Organization, 2013

Source: Global Health Observatory, data repository, World Health Organization, 2012

Air pollution in and around the home is largely a result of the burning of solid fuels (biomass or coal) for cooking. Women and children are at a greater risk for disease from household air pollution. Consequently, household air pollution is responsible for a larger proportion of the total number of deaths from ischaemic heart disease, stroke, lung cancer and COPD in women compared to men.∗

In Bangladesh, 61% percent of an estimated 17,100 child deaths due to acute lower respiratory infections is attributable to household air pollution (WHO, 2012).

Source: Global Health Observatory, data repository, World Health Organization, 2013

Health co-benefits are local, national, and international measures with the potential to simultaneously yield large, immediate public health benefits and reduce the upward trajectory of greenhouse gas emissions. Lower carbon strategies can also be cost-effective investments for individuals and societies.

Presented here are examples of opportunities for health co-benefits that could be realised by action in important greenhouse gas emitting sectors.a

In Bangladesh, by 2030, an estimated 159,000 annual premature deaths due to outdoor air pollution may be avoided and near-term climate change mitigated by implementing 14 short lived climate pollutant reduction measures. [Source: Shindell, D., et al, Science, 2012.]

a For a complete list of references used in the health co-benefits text please see the Climate and Health Country Profile Reference Document, http://www.who.int/globalchange/en/
A 2°C upper limit of temperature increase relative to pre-industrial levels has been internationally agreed in order to prevent severe and potentially catastrophic impacts from climate change. Reductions are necessary across countries and sectors. In order to stay below the 2°C upper limit it is estimated that global annual CO$_2$-energy emissions, currently at 5.2 tons per capita, need to be reduced to 1.6 tons per capita.

The most recent emissions data available for Bangladesh is from the year 2005. At that time, carbon emissions were increasing across sectors, with the largest contributions from agriculture and from waste. Through intersectoral collaboration, the health community can help to identify the best policy options not only to eventually stabilize greenhouse gas emissions, but also to provide the largest direct benefits to health.

National Response

1992
- **Bangladesh signed the UNFCCC**

2001
- **Bangladesh ratified the Kyoto Protocol**

2005
- **Bangladesh national adaptation plan**

2009
- **Bangladesh climate change strategy and action plan**

2010
- **Bangladesh climate change trust fund act**
GOVERNANCE AND POLICY

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country has identified a national focal point for climate change in the Ministry of Health</td>
<td>✔</td>
</tr>
<tr>
<td>Country has a national health adaptation strategy approved by relevant government body</td>
<td>✔</td>
</tr>
<tr>
<td>The National Communication submitted to UNFCCC includes health implications of climate change mitigation policies</td>
<td>✔</td>
</tr>
</tbody>
</table>

HEALTH ADAPTATION IMPLEMENTATION

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country is currently implementing projects or programmes on health adaptation to climate change</td>
<td>✔</td>
</tr>
<tr>
<td>Country has implemented actions to build institutional and technical capacities to work on climate change and health</td>
<td>✔</td>
</tr>
<tr>
<td>Country has conducted a national assessment of climate change impacts, vulnerability and adaptation for health</td>
<td>✔</td>
</tr>
<tr>
<td>Country has climate information included in Integrated Disease Surveillance and Response (IDSR) system, including development of early warning and response systems for climate-sensitive health risks</td>
<td>✗</td>
</tr>
<tr>
<td>Country has implemented activities to increase climate resilience of health infrastructure</td>
<td>✗</td>
</tr>
</tbody>
</table>

FINANCING AND COSTING MECHANISMS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated costs to implement health resilience to climate change included in planned allocations from domestic funds in the last financial biennium</td>
<td>✗</td>
</tr>
<tr>
<td>Estimated costs to implement health resilience to climate change included in planned allocations from international funds in the last financial biennium</td>
<td>✗</td>
</tr>
</tbody>
</table>

HEALTH BENEFITS FROM CLIMATE CHANGE MITIGATION

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>The national strategy for climate change mitigation includes consideration of the health implications (health risks or co-benefits) of climate change mitigation actions</td>
<td>✔</td>
</tr>
<tr>
<td>Country has conducted valuation of co-benefits of health implications of climate mitigation policies</td>
<td>✗</td>
</tr>
</tbody>
</table>

a Supporting monitoring efforts on health adaptation and mitigation of climate change: a systematic approach for tracking progress at the global level. WHO survey, 2015.