Household air pollution from solid cookfuel use

From Assessing Impacts to Advancing Solutions

Dr. Kalpana Balakrishnan
Professor & Director
WHO Collaborating Center for Occupational and Environmental Health
Center for Advanced Research on Environmental Health, (ICMR, Govt. of India)
Department of Environmental Health Engineering
Sri Ramachandra University
Solid Cookfuel Use

...still an everyday reality for 2.8 billion people

Source: Bonjour et al. EHP 2013
Solid Cookfuel Use

Source: Bonjour et al. EHP 2013

...still an everyday reality for 2.8 billion people
Black carbon (BC) is a component of fine particulate matter (PM$_{2.5}$). Solid biomass fuels used for cooking and space heating, contribute to about 25% of the global emissions of BC, 50% of anthropogenic emissions of BC and significant amounts of CO and VOC emissions.
CRA results from GBD 2010: Ranking Household Air Pollution (HAP) burdens across regions
SS Lim et al Lancet 2012

• Highest attributable disease burdens from HAP for South Asia and Africa

• HAP also among the highest ranking risk factors* in many countries

*among those examined
GBD 2010: Results for Household Air Pollution

- 3.5 million deaths; 110 million DALYs
- Nearly doubled since last GBD assessment in 2000 despite total number of SF users being ~constant at 2.8 billion
 - More diseases included
 - Increasing contributions from NCDs
 - Defined (lower) counterfactual (7µg/m³ PM$_{2.5}$)
 - Contributions to 16% of outdoor air pollution deaths (~500,000)

GBD 2010 goes beyond

(i) Non-solid fuel use (for defining counterfactual levels)
(ii) Women & children (for impacts)
(iii) Acute and chronic respiratory outcomes (for disease)
(iv) Indoor & Rural (for exposures)
GBD 2010: Results from country level estimates (India)

Women:
472,802 deaths
14,430,400 DALYs

Source: IHME, 2013

Men:
549,323 deaths
16,985,500 DALYs

Source: IHME, 2013

Total: 1,022,130 Deaths; 31,415,900 DALYs

Primarily NCD
Potential SLCP Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Justification</th>
</tr>
</thead>
</table>
| **Promote LPG by increasing affordability and access** | ❖ Currently forms the basis for disease burdens attributable to solid fuel use
❖ Highest reductions in PM, BC emissions when substituting for solid fuel using stoves
❖ Consistently meets WHO air quality guidelines under (virtually) all conditions of use
❖ Has been used by households in every region of the world and represents (a near) universal aspirational household energy standard for women
❖ Would require least amount of testing and maintenance to achieve life-time reductions in exposure, especially required to impact non-communicable disease burdens (assuming continued affordability)
❖ Allows parity on energy access between developed and developing regions
❖ Allows CDM modalities (Experience available from individual projects to explore scaling) |
Potential SLCP Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Justification</th>
</tr>
</thead>
</table>
| **Promote R&D on advanced combustion biomass based cook-stove design** | ❖ Imminently needed to fill gaps that cannot be filled by LPG in the near term
❖ Limited evidence of substantive exposure reductions and sustained use from available technologies
❖ Laboratory based emission reductions show promise of being able to attain desirable exposure benchmarks but currently need refinements through iterative inputs from field measurements (*Forced-convection stoves equipped with a fan to increase combustion efficiency have been shown to cut particulate emissions by 80–90%, black carbon by 60–90% and ozone-producing gases by 50–90%*)
❖ Field efficacy needs to be established before challenges of efficiency/effectiveness can be addressed
❖ Facilitates inter-sectoral dialogue between, health, energy and environment as well as using CDM modalities
❖ WHO-IAQG guidelines (becoming available shortly) will enable all the above |
Potential SLCP Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Justification</th>
</tr>
</thead>
</table>
| Interface household air pollution with ambient air quality within existing National Air Quality Programs | - Ambit of outdoor air quality regulation in many countries needs to cover rural areas (People do breathe everywhere!)
- Cannot meet ambient air quality guideline values without controlling solid fuel use related emissions in many countries
- Routine ambient monitoring in high solid fuel use regions may inform required density for intervention efforts to achieve and demonstrate health and climate benefits (especially for NCDs) |
| Increase local human resource capacities to conduct action research | - Will allow taking advantage of natural intervention experiments occurring within local and regional programmatic efforts concerning air quality
- Facilitate critical mass of risk communication efforts |
The combined public health impact of air pollution, (ambient and household) is substantial

Marching towards cleaner household energy is necessary for health, efficient for climate and profitable for both!

Special Acknowledgements
Dr. Kirk R Smith (UC Berkeley); Chair, GBD-HAP working Group and members of The GBD- HAP Working Group

Dr. Nigel Bruce(WHO; University of Liverpool) and members of The WHO-IAQG Working Group

Dr. Aaron Cohen (HEI) ;Co-Chair, GBD-OAP working group

Sri Ramachandra University
GBD HAP Expert Group

- UC Berkeley: Kirk R. Smith (Chair), Zoe Chafe, Michael Bates, Maureen Lahiff, Seth Shonkoff, Ray Lui, Jimmy Tran
- UC San Francisco: John Balmes
- Stanford: Sara Stern-Nezer
- World Bank: Doug Barnes
- UN Pop Division/DESA: Vinod Mishra
- HEI/GACC: Sumi Mehta
- NCI: Qing Lan, Dean Hosgood
- IARC: Kurt Straif
- UBC: Michael Brauer
- IIASA: Zig Klimont
- JRC: Rita Van Dingenen
- U of Liverpool: Nigel Bruce (WHO), Dan Pope, Mukesh Dherani, Imran Choudhury
- University of Munich: Eva Rehfuess
- WHO: Annette Pruss-Ustan, Sophie Bonjour, Heather adair Rohani
- Sri Ramachandra University: Kalpana Balakrishnan, Santu Ghosh, Sankar Sambandam, Guruswamy Thangavel
- Peking University: Jinliang Zhang, Xiaoli Duan
- Universidad Peruana de Ciencias Aplicadas: Claudio Lanata
- With much help from Majid Ezzati, Imperial/GBD; and Aaron Cohen, HEI