Frenkel, Lisa M.
Professor, of Pediatrics and Laboratory Medicine
Adjunct Professor, Global Health and Medicine
University of Washington
Affiliate Professor, Vaccine and Infectious Disease Division
Fred Hutchinson Cancer Research Center
Seattle, WA 98101

My laboratory research focuses on understanding HIV-drug-resistance (DR) and persistence of infection despite antiretroviral therapy (ART). To study DR mutations my group adapted an oligonucleotide ligation assay (OLA) to detect single-base changes conferring DR; optimized OLA to all prevalent subtypes; and validated OLA quantification of mutant by “next generation sequencing” (NGS). Our trials of OLA testing at codons 65, 103, 181, 184, 190 pre-ART of 1,228 Kenyans initiating non-nucleoside reverse transcriptase inhibitor-based ART show that: (1) NGS (pyrosequencing for 2006 study and Illumina from 2010 and 2014 studies) confirms all OLA detected DR constituting >5% of an individual’s pre-ART quasispecies; (2) M184V was rarely and K65R was never detected as the sole pre-ART mutant codon; (3) DR at ≥1 OLA codon predicts virologic failure (VF; ≥400c/mL) with NVP- (p<0.0001) and EFV-ART (p<0.0030) compared to wild-type codons; (4) Detection of DR at multiple codons confers a high risk of VF to NVP- (p<0.0001) and EFV-ART (p<0.0027), while K103N alone predicted VF to NVP- (p<0.0001) but not to EFV-ART (p=0.4109). (5) Prediction of VF by mutant load (% mutant x VL) was similar to risk by mutant%. These data are likely relevant to assessing risk of VF from WHO DR surveillance.