VigiSearch/ VigiMine

Magnus Wallberg

November 24th 2009
Dar Es Salaam, Tanzania

magnus.wallberg@who-umc.org
First a short reminder...
Drug dictionary

• In VigiBase all drugs/vaccines on reports are mapped against the WHO Drug Dictionary (WHO-DD)
• All drugs in WHO-DD contain information about active ingredients and ATC codes
 – Enables analysis based on active ingredients or ATC codes
 – Removes complexity of different names on medicinal products containing the same active ingredient when analyzing data
 – But… still allows for comparisons between products
Terminologies

- All ADR terms in VigiBase are mapped against a MedDRA and WHO-ART
 - Analysis can be made using both terminologies
 - Releases the strength of both terminologies
 - WHO-ART – smaller, may simplify analysis
 - MedDRA – use of Standardized MedDRA Queries (SMQs)
 - Indications, background diseases and so forth are coded against ICD or MedDRA
- Since WHO-ART is used by the African countries the focus in this presentation will be on WHO-ART
VigiSearch

- Search interface for Vigibase data
- Web based
- Freely available for all members in the WHO Program for International Drug Monitoring
- Actually combination of two tools:
 - VigiSearch
 - VigiMine, included in VigiSearch in November 2008
Modules included in “VigiSearch”

• Query interface with predefined filters
• Reporting statistics
 – substances and ADRs
• Line listing
• Single report output
• Saved queries and results
VigiMine

• Produces IC values for reaction/substance pairs according to the BCPNN algorithm
 - BCPNN – Bayesian Confidence Propagation Neural Network
 - IC – Information component

• Produces statistics with IC values stratified by:
 - Sex
 - Age group
 - ...

• Capable of producing time scans
 - How the IC values changes over time
IC?

• “Information Component”
• A value describing the deviation from the “normal distribution” of an ADR/substance combination.
• The mathematical model behind the IC value is complex
 … here is a very simplified explanation
IC - “simplified example”

- Assume that you have:
 - 1,000,000 reports
 - 1,000 ADR terms “A”
 - 1,000 Drugs “B”
- Then…
 - The probability for reaction A is 1/1000 (1‰)
 - The probability for Drug B is also 1/1000 (1‰)
 - There should statistically be one combination of ADR “A” and drug “B”
 - If so - the IC will have a value of “0”
 - If there are more than one combination, the IC will have a value above “0”
 - A signal is “indicated” if the IC value is over “1”

But as mentioned…

…it is not as easy as this in reality due to the nature of drugs ADRs, confidence intervals etc…
VigiSearch/ VigiMine structure

- Main page
- Help

- VigiSearch query form
 - Statistics
 - Report list
 - Report (PDF)

- VigiMine query form
 - Simple list
 - Details
The VigiSearch track
Building a query in VigiSearch

- To find what you are looking for in VigiSearch you have the following search possibilities...
 - **Product name, substance or ATC-code**
 - **Reaction (SOC, HLT, PT or IT level)**
 - Gender
 - Age group
 - Route
 - Country
 - Date
 - Causality
 - ...

Magnus Wallberg, UMC
Search Form

Dataset date: 2009-04-01
Total number of reports: 4644553

Drugs included in search
- Preferred base
- Begins with

Reactions included in search
- PT
- Begins with

Received date
- From date
- To date

Header
- [add description]

Country
- [select]

Route of admin
- [select]

Age group
- Neonate
- Infant
- Child
- Adolescent
- Adult
- Elderly

Gender
- Male
- Female
- Unknown

Dechallenge outcome
- Reaction abated
- No effect observed
- Effect unknown
- Reaction intensified
- Not applicable

Rechallenge outcome
- Reaction recurred
- No recurrence
- Effect unknown
- Not recurrence
- Not applicable

Causality
- Certain
- Probable
- Possible
- Unlikely
- No relationship
- Not (yet) assessed
- Not assessable
- Unknown

Outcome
- Recovered
- Not recovered
- Recovering
- Recovered with sequelae
- Died
- Died- reaction may be contributory
- Died- unrelated to reaction
- Unknown

Reporter type
- Physician
- Other Health Professional
- Consumer/Non Health Professional
- Literature
- Distributor
- Nurse
- General practitioner
- Manufacturer
- Pharmacist
- Lawyer
- Study
- Company Representative
- Other
- Hospital
- Specialist physician
- Dentist

Report type
- Not available to sender
- Other
- PMS/Special monitoring
- Spontaneous report
- Clinical Trial
- Report from study
- Patient safety

[^simple view]
Running a query

• The query will be queued as running and marked as executed when finished… this allows for the running of large (time consuming) queries
Running a query

| Dataset date | Total number of reports | 2009-07-01 | 4759960 |

Query list

<table>
<thead>
<tr>
<th>Your latest queries</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemether</td>
<td>2009-07-30 10:05:08 Executed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Artemether</td>
<td>2009-07-30 09:59:50 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Lumefantrine</td>
<td>2009-07-30 09:13:03 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Artemisinin</td>
<td>2009-07-30 09:11:41 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Malarone</td>
<td>2009-06-21 07:44:08 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Alvedon....</td>
<td>2008-12-10 10:37:46 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Alvedon....</td>
<td>2008-12-10 09:34:12 Executed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>ERGOTISM....</td>
<td>2008-11-14 13:22:06 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Alvedon....</td>
<td>2008-08-20 15:49:17 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Alvedon....</td>
<td>2008-08-20 14:56:58 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Ciclosporin....</td>
<td>2008-05-30 17:16:15 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
<tr>
<td>Cyclosporin....</td>
<td>2008-05-30 17:15:22 Viewed</td>
<td>Get Result</td>
<td>Delete</td>
</tr>
</tbody>
</table>

Magnus Wallberg, UMC
Getting the result

Dataset date: 2009-07-01
Total number of reports: 4759960

Your latest queries

- **year**
- **country**
- **ADR**

WHO-ART terminology

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Total</th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soc CENTR & PERIPH NERVOUS SYSTEM DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLT undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Dizziness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Encephalomyelitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Headache</td>
<td>10</td>
<td>✓</td>
</tr>
<tr>
<td>Pt Tremor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Ataxia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Ataxia cerebellar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soc FOETAL DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLT undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Eye malformation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soc GASTRO-INTESTINAL SYSTEM DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLT undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Diarrhoea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Nausea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Vomiting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLT Peptic ulcer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Gastric ulcer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt Stomatitis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magr
Retrieving the reports

Dataset date:
009-07-01

Total number of reports:
4,759,960

The result includes 10 reports (1 to 10):

<table>
<thead>
<tr>
<th>Safetyreportid</th>
<th>Country</th>
<th>Reporter</th>
<th>Date database</th>
<th>Gender</th>
<th>Causality</th>
<th>Drug</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-THNC-39/01307</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19971220</td>
<td>Year(s)</td>
<td>Female</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>TH-THNC-39/01723</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19980116</td>
<td>Year(s)</td>
<td>Male</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>TH-THNC-39/01724</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19980116</td>
<td>Year(s)</td>
<td>Female</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>TH-THNC-39/01725</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19980116</td>
<td>Year(s)</td>
<td>Female</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>TH-THNC-39/01726</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19980116</td>
<td>Year(s)</td>
<td>Female</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>TH-THNC-39/01727</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19980116</td>
<td>Year(s)</td>
<td>Female</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>TH-THNC-39/01728</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19980116</td>
<td>Year(s)</td>
<td>Male</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>TH-THNC-39/01729</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19980116</td>
<td>Year(s)</td>
<td>Male</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>TH-THNC-39/02008</td>
<td>Thailand</td>
<td>Specialist physician</td>
<td>19980116</td>
<td>Year(s)</td>
<td>Female</td>
<td>Possible</td>
<td></td>
</tr>
<tr>
<td>NG-NAFDAC-2008-00007</td>
<td>Nigeria</td>
<td>Other Health Professional</td>
<td>20090221</td>
<td>Year(s)</td>
<td>Male</td>
<td>Possible</td>
<td></td>
</tr>
</tbody>
</table>

Select

Export to excel Print selected report(s) Back to result
Magnus Wallberg, UMC

Single ICSR output format

Safetyreportid: NG-NAFDAC-2008-00007

Print date: 2009/07/30

Report information

<table>
<thead>
<tr>
<th>Type of report</th>
<th>Date entered into vigilæse</th>
<th>Reporter type</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous report</td>
<td>20090221</td>
<td>Other Health Professional</td>
<td>Nigeria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serious case</th>
<th>Serious criteria</th>
<th>Death date</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Patient characteristics

<table>
<thead>
<tr>
<th>Sex</th>
<th>Birth year</th>
<th>Age at onset</th>
<th>Age group</th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>1961</td>
<td>45 Year(s)</td>
<td>Adult</td>
<td>65</td>
<td>-</td>
</tr>
</tbody>
</table>

Relevant Medical History

Reaction(s)/Event(s)

<table>
<thead>
<tr>
<th>Id</th>
<th>Reported term</th>
<th>WHO-ART</th>
<th>MedDRA</th>
<th>Onset date</th>
<th>End date</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Headache</td>
<td>Headache</td>
<td>Headache</td>
<td>20091116</td>
<td>-</td>
<td>Recovered</td>
</tr>
</tbody>
</table>

Causality of Drug to Reaction (CIOMS V)

<table>
<thead>
<tr>
<th>1 Headache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemether</td>
</tr>
</tbody>
</table>

Rechallenge 1 (RC1): RE=Rechallenge, DI=Dose Increased, NR=No rechallenge, UN=Unknown, SD=Same Dose, N/A=Not applicable

Rechallenge 2 (RC2): RR=Reaction recurred, NR=No recurrence, UN=Effect unknown, N/A=Not applicable

Rechallenge 1 (DC1): WR=Dose withdrawn, DI=Dose increased, DC=Dose unchanged, UN=Unknown, N/A=Not applicable

Rechallenge 2 (DC2): RA=Reaction abated, RI=Reaction Intensified, NF=No effect observed, UN=Effect unknown, N/A=Not applicable

Suspected/Interacting Drugs: Details

<table>
<thead>
<tr>
<th>Route</th>
<th>Dose</th>
<th>Frequency</th>
<th>Start Date</th>
<th>Duration of use</th>
<th>Indication</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemether (Artemether)</td>
<td>-</td>
<td>100 Milligram</td>
<td>8 per Day</td>
<td>3 Day(s)</td>
<td>Unspecified malaria</td>
<td>Suspected</td>
</tr>
</tbody>
</table>

Additional Information: Dosage: 4 BID X 3/7XNAFDAC No: 04.6199XExpiry date: 08/2008
The VigiMine track
Query form/ combination list

- The VigiMine query form is built using the same concept as VigiSearch but with different filters
 - The drug and reaction selections are the same
- There is no expanded query view
- The result on the active filters are displayed immediately as a list of combinations
 - Therefore – when entering the query form the combinations with highest IC values in the entire database are displayed
The Information Component (IC) has been extensively evaluated for its use in signal detection based on the WHO-ART terminology. While in principle IC values should be similarly useful with the MedDRA terminology, this has not been tested in practice by the UMC.

<table>
<thead>
<tr>
<th>drugs included in search</th>
<th>reactions included in search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred base - Artemether</td>
<td>PT begins with</td>
</tr>
<tr>
<td>Preferred base - Artemether/Lumefantrine</td>
<td></td>
</tr>
<tr>
<td>Preferred base</td>
<td>begins with</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vocabulary</th>
<th>preferred term</th>
<th>critical</th>
<th>NComb</th>
<th>IC</th>
<th>IC025</th>
<th>Ndrug</th>
<th>Nadr</th>
<th>Ncountry</th>
<th>Ngechall</th>
<th>Nrecall</th>
<th>Nfatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>details reports</td>
<td>Artemether</td>
<td>Headache</td>
<td>10</td>
<td>2.85</td>
<td>1.92</td>
<td>26</td>
<td>174,372</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>details reports</td>
<td>Artemether</td>
<td>Agitation</td>
<td>6</td>
<td>3.02</td>
<td>1.64</td>
<td>26</td>
<td>55,269</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>details reports</td>
<td>Artemether/Lumefantrine</td>
<td>Medicine ineffective</td>
<td>8</td>
<td>2.57</td>
<td>1.40</td>
<td>26</td>
<td>84,094</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>details reports</td>
<td>Artemether</td>
<td>Dizziness</td>
<td>7</td>
<td>2.45</td>
<td>1.19</td>
<td>26</td>
<td>159,608</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>details reports</td>
<td>Artemether</td>
<td>Hepatitis</td>
<td>3</td>
<td>2.39</td>
<td>0.34</td>
<td>26</td>
<td>31,044</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>details reports</td>
<td>Artemether/Lumefantrine</td>
<td>Rash maculo-papular</td>
<td>5</td>
<td>1.86</td>
<td>0.34</td>
<td>53</td>
<td>90,904</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>details reports</td>
<td>Artemether/Lumefantrine</td>
<td>Stevens Johnson syndrome</td>
<td>3</td>
<td>2.34</td>
<td>0.29</td>
<td>53</td>
<td>17,154</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>details reports</td>
<td>Artemether</td>
<td>Confusion</td>
<td>3</td>
<td>2.04</td>
<td>-0.01</td>
<td>26</td>
<td>64,379</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Details/ statistics

General
- **Dataset date**: 2009-07-01
- **Terminology**: WHO-ART
- **N_tot**: 4,759,960

Combination details
- **Preferred base**: Artemether
- **Preferred term**: Headache
- **N_comb**: 10
- **N_drug**: 26
- **N_adr**: 174,372
- **N_country**: 2
- **N_dechal**: 0
- **N_rechal**: 1
- **N_fatal**: 0

Gender
<table>
<thead>
<tr>
<th>Gender</th>
<th>N_comb</th>
<th>N_drug</th>
<th>N_adr</th>
<th>N_tot</th>
<th>IC</th>
<th>IC025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>0</td>
<td>3</td>
<td>7,753</td>
<td>338,505</td>
<td>-0.19</td>
<td>-10.83</td>
</tr>
<tr>
<td>Male</td>
<td>4</td>
<td>12</td>
<td>54,141</td>
<td>1,760,874</td>
<td>2.37</td>
<td>0.79</td>
</tr>
<tr>
<td>Female</td>
<td>6</td>
<td>11</td>
<td>112,478</td>
<td>2,560,581</td>
<td>2.75</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Age group (WONCA)

Age group
- **N_comb**: 3
- **N_drug**: 6
- **N_adr**: 9,734
- **N_tot**: 175,753
- **IC**: 2.07
- **IC025**: 0.27
- **Age group**: 5-14
- **5-14**: 2
- **5-14**: 4
- **5-14**: 12,797
- **5-14**: 264,847
- **5-14**: 1.85
- **5-14**: -0.51
- **5-14**: 41,249
- **5-14**: 888,878
- **5-14**: 2.17
- **5-14**: 0.34
- **5-14**: 48,017
- **5-14**: 1,127,243
- **5-14**: 1.09
- **5-14**: -0.40

Reporting year (non-cumulative)

Country
- **NGS**: 1
- **NGS**: 3
- **NGS**: 9
- **NGS**: 222
- **NGS**: 1.27
- **NGS**: -2.36
- **THA**: 9
- **THA**: 13
- **THA**: 2,970
- **THA**: 130,226
- **THA**: 3.58
- **THA**: 2.64

Year
- **2009**: 1
- **2009**: 5
- **2009**: 15,810
- **2009**: 433,018
- **2009**: 1.14
- **2009**: -2.52
- **1997**: 9
- **1997**: 10
- **1997**: 4,051
- **1997**: 106,935
- **1997**: 3.43
- **1997**: 2.57

Age group (WONCA)-Gender

Gender/age group
- **5-14/Female**: 3
- **5-14/Female**: 4
- **5-14/Female**: 4,848
- **5-14/Female**: 80,153
- **5-14/Female**: 2.24
- **5-14/Female**: 0.48
- **15-24/Female**: 2
- **15-24/Female**: 3
- **15-24/Female**: 9,051
- **15-24/Female**: 170,986
- **15-24/Female**: 1.92
- **15-24/Female**: -0.41
- **25-44/Male**: 3
- **25-44/Male**: 5
- **25-44/Male**: 11,995
- **25-44/Male**: 300,535
- **25-44/Male**: 2.32
- **25-44/Male**: 0.49
- **45-64/Female**: 1
- **45-64/Female**: 1
- **45-64/Female**: 32,752
- **45-64/Female**: 655,902
- **45-64/Female**: 1.45
- **45-64/Female**: -2.14
- **45-64/Male**: 1
- **45-64/Male**: 3
- **45-64/Male**: 15,539
- **45-64/Male**: 455,837
- **45-64/Male**: 1.30
- **45-64/Male**: -2.34
Simple report list

<table>
<thead>
<tr>
<th>report id</th>
<th>authority number</th>
<th>quarter</th>
<th>date db</th>
<th>gender</th>
<th>age (years)</th>
<th>age group</th>
<th>country</th>
<th>dechallenge</th>
<th>rechallenge</th>
<th>fatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1797208</td>
<td>TH-THNC-39/01307</td>
<td>1997 4</td>
<td>19971220</td>
<td>Female</td>
<td>24</td>
<td>15-24</td>
<td>THA</td>
<td>Effect unknown</td>
<td>Effect unknown</td>
<td>N</td>
</tr>
<tr>
<td>1798062</td>
<td>TH-THNC-39/01726</td>
<td>1997 4</td>
<td>19980116</td>
<td>Female</td>
<td>14</td>
<td>5-14</td>
<td>THA</td>
<td>Effect unknown</td>
<td>Effect unknown</td>
<td>N</td>
</tr>
<tr>
<td>1798061</td>
<td>TH-THNC-39/01725</td>
<td>1997 4</td>
<td>19980116</td>
<td>Female</td>
<td>9</td>
<td>5-14</td>
<td>THA</td>
<td>Effect unknown</td>
<td>Effect unknown</td>
<td>N</td>
</tr>
<tr>
<td>1798202</td>
<td>TH-THNC-39/02008</td>
<td>1997 4</td>
<td>19980116</td>
<td>Female</td>
<td>50</td>
<td>45-64</td>
<td>THA</td>
<td>Effect unknown</td>
<td>Effect unknown</td>
<td>N</td>
</tr>
<tr>
<td>1798060</td>
<td>TH-THNC-39/01724</td>
<td>1997 4</td>
<td>19980116</td>
<td>Female</td>
<td>12</td>
<td>5-14</td>
<td>THA</td>
<td>Effect unknown</td>
<td>Effect unknown</td>
<td>N</td>
</tr>
<tr>
<td>1798065</td>
<td>TH-THNC-39/01729</td>
<td>1997 4</td>
<td>19980116</td>
<td>Male</td>
<td>38</td>
<td>25-44</td>
<td>THA</td>
<td>Effect unknown</td>
<td>Effect unknown</td>
<td>N</td>
</tr>
<tr>
<td>10589326</td>
<td>NG-NAFAC-2008-00007</td>
<td>2009 2</td>
<td>20090221</td>
<td>Male</td>
<td>45</td>
<td>45-64</td>
<td>NGA</td>
<td>Not applicable</td>
<td>Reaction recur</td>
<td>N</td>
</tr>
</tbody>
</table>

Magnus Wallberg, UMC
VigiSearch/ VigiMine - recall

- Main page
- Help
- VigiSearch query form
 - Statistics
- VigiMine query form
 - Simple list
 - Details
- Report list
- Report (PDF)
More about terminologies

In VigiSearch and VigiMine you can search on WHO-ART or MedDRA* and look at listings and reports in any of those…

so…

which one should you pick?

* MedDRA is the default
Let's take a look at the MedDRA grouping structure again...

WHO-ART view
2 reports
1 term

MedDRA view
2 reports
2 terms
VigiSearch - live demonstration

Magnus Wallberg, UMC