Measuring health workforce inequalities in the Ethiopian context: methods and applications

Yayehyirad Kitaw MD/MPH
yayehyirad@ethionet.et
Damen Hailemariam MD/PHD
hcfp.aau@ethionet.et
Human resources for health (HRH) crisis is recognized worldwide

Figure 1: Human resources and health clusters

Note: See appendix 2.
Health Workforce: Complex & Dynamic

[Diagram showing the relationship between human resource actions, workforce objectives, health system performance, and health outcomes.]

- **Human resource actions**
 - Numeric adequacy
 - Skill mix
 - Social outreach
 - Satisfactory remuneration
 - Work environment
 - Systems support
 - Appropriate skills
 - Training and learning
 - Leadership and entrepreneurship

- **Workforce objectives**
 - Coverage: social and physical
 - Motivation: systems and support
 - Competence: training and learning

- **Health system performance**
 - Equitable access
 - Efficiency and effectiveness
 - Quality and responsiveness

- **Health outcomes**
 - Health of the population
The Challenge of Measuring HRH Inequalities in Ethiopia

- Large >1million km²
- Underdeveloped: GDP per capita about US$800 (PPP)
- 2nd largest population in SSA > 70 million
- one of the lowest HRH densities in the world (in the low-density – high-mortality cluster)
- suffers from extreme intra-country inequalities (urban/rural, inter-regional, ‘emerging regions’ in particular).
- health workforce has grown substantially in the last 10 years even though
 - from a weak base;
 - details vary with relative reduction in medical doctors & health assistants (HA)
 but phenomenal increase in the numbers of health officers (HO) and health extension workers (HEW)
- Difficult to measure in the context of a large number of disparate categories
 - Only includes doctors, nurses and midwives – but large number of substitutes (e.g. HO, HEW)
 - Weight all as equal – but consider specialists have >20 years of education to community health workers [CHW] with few months of training
- Need for developing a methodology for measuring health workforce inequalities that takes account of the various disparities
Method: Measuring inequalities raises complex issues

- Equity viewed
 - across equity strata - sex, race, ethnicity, region, education, occupation, place
 - along dimensions of health status - risk, disease, death, social consequences of illness
 - along health care inequities: access, quality & cost of treatment
 - issues of ‘tolerable’ vs. ‘intolerable’ inequalities
- Need for multiple indicators to capture complexities, but opted to focus on normative population-based indicators:
 - availability of data and ease of application
 - Indicators such as physician/population ratios: less complex & easier to comprehend.
 - Compare with a “gold standard” to identify and quantify imbalance.
- Option: use WHO approach modified to reflect Ethiopian realities.
Method: Lines of Adaptation

• Which categories of HRH to include (to better capture inequalities & impact on health outcomes)?
 – Entire national health workforce (health service providers + health management & support workers)?
 – In all sectors (public, private, not-for-profit and for profit)?
 – Limit to direct health services providers & only to public sector (by far the largest health care provider), because of availability of data & ease of application. I.e. Ethiopian context:
 • inclusion of doctors, nurses and midwives but also of middle level cadres (Health Assistants [HA], Health Officers [HO]...) and community health workers (HEW...) [who play important role in providing access to poor and remote populations] but
 • leaves out health workers supported by communities (CHA, TBA, CBRHA, Health Promoters...) & traditional practitioners.
Method (cont.): Weighting

• WHO approach gives equal weight to all categories (MD, N & MW) included in analysis, is this acceptable if e.g. HEW included (i.e. first contact health care providers)

• Some form of weighting seems necessary to account for
 – the scope of the services and
 – the level of care they provide

• Number of weighting measures could be envisaged, only two
 – total number of years of education (including training); and
 – number of years of professional training alone were considered.
 – To compare with WHO approach, the average year of training of MD and nurses (21 years = ‘gold standard’) was used to weigh the number of years of education of each category. Various options explored to measure workforce density (WD):

• Option A – including only doctors (includes HO), nurses and midwives and considering them all as equals i.e. the WHO approach \[WD^o = 1/p \sum D_\iota + N_\iota + M_\iota\]

• Option B – as in A but adding health assistants, health extension workers and frontline workers all considered as equals \[WD^1 = 1/p \sum D_\iota + HO_\iota + N_\iota + M_\iota + HA_\iota + HEW_\iota + FLW_\iota\]

• Option C – as in B but weighted by years of education \[WD^2 = 1/\Delta e p \sum S_{ie} + G_{ie} + HO_{ie} + N_{ie} + M_{ie} + HA_{ie} + HEW_{ie} + FLW_{ie}\]

• Option D – as in C but weighted only by years of professional training \[WD^3 = 1/\Delta t p \sum S_{it} + G_{it} + HO_{it} + N_{it} + M_{it} + HA_{it} + HEW_{it} + FLW_{it}\]
Result: Workforce density by Options, Selected Regions, 2007

- Addis Ababa
- Tigray
- Ethiopia
- Amhara

<table>
<thead>
<tr>
<th>Option</th>
<th>Addis Ababa</th>
<th>Tigray</th>
<th>Ethiopia</th>
<th>Amhara</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.53</td>
<td>0.74</td>
<td>0.56</td>
<td>0.11</td>
</tr>
<tr>
<td>B</td>
<td>0.81</td>
<td>0.0</td>
<td>0.51</td>
<td>0.27</td>
</tr>
<tr>
<td>C</td>
<td>0.65</td>
<td>0.42</td>
<td>0.62</td>
<td>0.19</td>
</tr>
<tr>
<td>D</td>
<td>0.35</td>
<td>0.4</td>
<td>0.35</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Evolution of Workforce Density, Ethiopia 1945-2007 (Population in millions)
Discussion

• Measuring inequalities very important in informing policy decisions and plans but
 – lot of uncertainty on the concept of imbalances –
 • absence of a common framework for health workforce studies and the large
differences regarding concepts, methodology and periodicity of data collection
 • considering only doctors and nurses/midwives leaves out, unduly, a large number of
 the workforce,
 • the un-weighed inclusion of other categories unacceptably ‘flattens’ the inequalities.
• Roles of health care workers vary & the professions have evolved differently
 between countries and over time in the same country. Difficult to show which
 professionals complement or substitute another because professional boundaries
 are not well defined.
• In the case of Ethiopia:
 – Some professions have come and gone (e.g. HO and HA) or changed names and
 functions several times (e.g. HA and nurses).
 – The issue of which categories to include is a difficult one.
 • Traditional practitioners and a large number of volunteer, community-based health
 workers have been left out of most research even though it is well known that they
 play an important role in health.
 • However, all those included have at one point or another served as first contact
 providers and therefore their inclusion could be justified.
 • Weighing them by years of education approximates closely the service they provide
 as first contact providers.
 • Attempting to refine the categorization would not serve much purpose at this stage.
Conclusion

• The results clearly show that health workforce density in Ethiopia is
 – very low even in the capital city and
 – unequally distributed country wide.

• Comparison of inequalities in HRH provision should be made cautiously but we believe that including broader categories of 1st contact health workers and weighting their possible contributions will help refine the evidence base for policy and planning of HRH.
Thanks to the World Health Organization for sponsoring this presentation!

Thank You!