<table>
<thead>
<tr>
<th>Antigen</th>
<th>Age of 1st Dose</th>
<th>Doses in Primary Series (min interval between doses)**</th>
<th>Interrupted primary series***</th>
<th>Doses for those who start vaccination late</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If ≤ 12 months of age</td>
</tr>
<tr>
<td>Recommendations for all immunization programmes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCG 1</td>
<td>As soon as possible after birth</td>
<td>1 dose</td>
<td>NA</td>
<td>1 dose</td>
</tr>
<tr>
<td>Hepatitis B 2</td>
<td>As soon as possible after birth (<24h)</td>
<td>Birth dose <24 hrs plus 2-3 doses with DTPCV (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>3 doses</td>
</tr>
<tr>
<td>Polio 3</td>
<td>6 weeks (see footnote for birth dose)</td>
<td>4 doses (IPV dose to be given with bOPV dose from 14 weeks of age (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>4 doses (IPV to be given with 1st dose of bOPV)</td>
</tr>
<tr>
<td>bOPV + IPV</td>
<td>8 weeks (IPV 1st)</td>
<td>1-2 doses IPV and 2 doses bOPV (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>1-2 doses IPV and 2 doses bOPV</td>
</tr>
<tr>
<td>IPV / bOPV Sequential</td>
<td>8 weeks</td>
<td>3 doses (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>3 doses</td>
</tr>
<tr>
<td>IPV</td>
<td>8 weeks</td>
<td>3 doses (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>3 doses</td>
</tr>
<tr>
<td>DTP-containing vaccine (DTPCV) 4</td>
<td>6 weeks (min)</td>
<td>3 doses (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>3 doses</td>
</tr>
<tr>
<td>Haemophilus influenzae type b 5</td>
<td>Option 1</td>
<td>3 doses (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>3 doses</td>
</tr>
<tr>
<td>Haemophilus influenzae type b 5</td>
<td>Option 2</td>
<td>2-3 doses (8 weeks if 2 doses; 4 weeks if 3 doses)</td>
<td>Resume without repeating previous dose</td>
<td>2-3 doses</td>
</tr>
<tr>
<td>Pneumococcal (Conjugate) 6</td>
<td>6 weeks (min)</td>
<td>3 doses with DTPCV (4 weeks) or 2 doses (8 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>2-3 doses</td>
</tr>
<tr>
<td>Rotavirus 7</td>
<td>6 weeks (min)</td>
<td>2 or 3 depending on product given with DTPCV</td>
<td>Resume without repeating previous dose</td>
<td>2 or 3 depending on product</td>
</tr>
<tr>
<td>Measles 8</td>
<td>9 or 12 months</td>
<td>2 doses (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>2 doses</td>
</tr>
<tr>
<td>Rubella 9</td>
<td>9 or 12 months</td>
<td>1 dose with measles containing vaccine</td>
<td>NA</td>
<td>1 dose</td>
</tr>
<tr>
<td>HPV 10</td>
<td>As soon as possible from 9 years of age (females)</td>
<td>2 doses (5 months)</td>
<td>If 1st dose given before 15 years of age resume without repeating previous dose</td>
<td>NA</td>
</tr>
</tbody>
</table>

** For some antigens the WHO position paper does not provide a recommendation on interrupted or delayed schedules at this present time. When the position paper is next revised this will be included. In the meantime, some of the recommendations are based on expert opinion.

** See Table 2: Summary of WHO Position Papers - Recommended Routine Immunizations for Children for full details (www.who.int/immunization/documents/positionpapers/).

*** Same interval as primary series unless otherwise specified.
<table>
<thead>
<tr>
<th>Antigen</th>
<th>Age of 1st Dose</th>
<th>Doses in Primary Series (min interval between doses)**</th>
<th>Interrupted primary series***</th>
<th>Doses for those who start vaccination late</th>
<th>Booster Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations for certain regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese Encephalitis 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactivated Vero cell-derived vaccine</td>
<td>6 months</td>
<td>2 (4 weeks) generally</td>
<td>Resume without repeating previous dose</td>
<td>2 doses (generally)</td>
<td>Not recommended</td>
</tr>
<tr>
<td>Live attenuated</td>
<td>9 months</td>
<td>1 dose with measles containing vaccine</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Live recombinant vaccine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow Fever 12</td>
<td>9-12 months</td>
<td>1 dose with measles containing vaccine</td>
<td>NA</td>
<td>1 dose</td>
<td></td>
</tr>
<tr>
<td>Tick-Borne Encephalitis 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSME-Immun & Encepur</td>
<td>≥ 1 yr</td>
<td>3 doses (1st to 2nd 1-3 mos; 2nd to 3rd 12 mos)</td>
<td>Resume without repeating previous dose</td>
<td>3 doses</td>
<td>At least 1 booster</td>
</tr>
<tr>
<td>TBE_Moscow & EnceVir</td>
<td>≥ 3 yr</td>
<td>3 doses (1st to 2nd 1-7 mos; 2nd to 3rd 12 mos)</td>
<td>Resume without repeating previous dose</td>
<td>3 doses</td>
<td>Every 3 years</td>
</tr>
<tr>
<td>Recommendations for some high-risk populations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhoid 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCV-Typbar</td>
<td>>6 months</td>
<td>1 dose</td>
<td>NA</td>
<td>1 dose</td>
<td>Every 3 years</td>
</tr>
<tr>
<td>Vi PS</td>
<td>2 years (min)</td>
<td>1 dose</td>
<td>NA</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>Ty21a</td>
<td>Capsules 5 years (min) (see footnote)</td>
<td>3-4 doses (1 day) (see footnote)</td>
<td>If interruption between doses is < 21 days resume without repeating previous dose; If > 21 days restart primary series</td>
<td>Not recommended</td>
<td>> 5 yrs: 3-4 doses</td>
</tr>
<tr>
<td>Cholera 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dukoral (WC-rBS)</td>
<td>2 years (min)</td>
<td>2-5 yrs: 3 doses</td>
<td>If interval since last dose ≥ 6 weeks restart primary series</td>
<td>Not recommended</td>
<td>2-5 yrs: 3 doses</td>
</tr>
<tr>
<td>Shanchol, Euvchol and mORCVAX</td>
<td>1 year (min)</td>
<td>2 doses (2 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>Not recommended</td>
<td>2 doses</td>
</tr>
<tr>
<td>MenA conjugate (5µg)</td>
<td>9-18 months</td>
<td>1</td>
<td>NA</td>
<td>2 doses if < 9 months with 8 week interval</td>
<td>Not recommended</td>
</tr>
<tr>
<td>MenC conjugate</td>
<td>2-11 months</td>
<td>2 (8 weeks min)</td>
<td>Resume without repeating previous dose</td>
<td>2 doses</td>
<td>2-11 months of age after 1 year</td>
</tr>
<tr>
<td>Quadrivalent conjugate</td>
<td>9-23 months</td>
<td>1</td>
<td>NA</td>
<td>2 doses</td>
<td></td>
</tr>
<tr>
<td>≥ 2 years</td>
<td>1 year (min)</td>
<td>2 (12 weeks min)</td>
<td>Resume without repeating previous dose</td>
<td>2 doses</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A 17</td>
<td>1 year (min)</td>
<td>At least 1 dose</td>
<td>NA</td>
<td>1 dose</td>
<td>Not recommended</td>
</tr>
<tr>
<td>Rabies 18</td>
<td>As required</td>
<td>2 (1st to 2nd 7 days)</td>
<td>Resume without repeating previous dose;</td>
<td>1 dose</td>
<td></td>
</tr>
<tr>
<td>Dengue (CYD-TDV) 19</td>
<td>9 years (min)</td>
<td>3 doses (6 months)</td>
<td>Resume without repeating dose</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>Recommendations for immunization programmes with certain characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mumps 20</td>
<td>12-18 months</td>
<td>2 doses with measles containing vaccine (4 weeks)</td>
<td>Resume without repeating previous dose</td>
<td>Not recommended</td>
<td></td>
</tr>
<tr>
<td>Seasonal influenza (inactivated tri- and quadri-valent) 21</td>
<td>6 months (min)</td>
<td>< 9 yrs: 2 doses (4 weeks) ≥ 9 yrs: 1 dose</td>
<td>Resume without repeating previous dose</td>
<td>2 doses</td>
<td>Revaccinate annually 1 dose only</td>
</tr>
<tr>
<td>Varicella 22</td>
<td>12-18 months</td>
<td>1-2 (4 weeks – 3 months, depending on manufacturer)</td>
<td>Resume without repeating previous dose</td>
<td>Not recommended</td>
<td></td>
</tr>
</tbody>
</table>
Summary Table 3 - Notes

- The attached table summarizes the WHO recommendations for interrupted or delayed routine vaccination. Its purpose is to assist national decision-makers and programme managers to develop appropriate policy guidance in relation to their national immunization schedule.

- This table is designed to be used together with two other summary tables - Table 1: Summary of WHO Position Papers - Recommendations for Routine Immunization; and Table 2: Summary of WHO Position Papers - Recommended Routine Immunization for Children.

- Vaccines can generally be co-administered (i.e. more than one vaccine given at different sites during the same visit). Recommendations that explicitly endorse co-administration are indicated in the footnotes. Lack of an explicit co-administration recommendation is often due to a lack of evidence and does not necessarily imply that the vaccine cannot be co-administered. Exceptions to co-administration are stated.

- Refer to http://www.who.int/immunization/positionpapers/ for the most recent version of this table and position papers.

1 BCG

- BCG vaccination is recommended for unvaccinated TST- or IGRA-negative older children, adolescents and adults from settings with high incidence of TB and/or high leprosy burden and those moving from low to high TB incidence/leprosy burden settings.

2 Hepatitis B

- In general, the dose for infants and children (aged < 15 years) is half the recommended adult dose.
- Co-administration of HepB vaccine does not interfere with the immune response to any other vaccine and vice versa.
- If delayed or interrupted scheduling of vaccination for children, adolescents and adults, 3 doses are recommended, with the second dose administered at least 1 month after the first, and the third dose 6 months after the first dose. If the vaccination schedule is interrupted it is not necessary to restart the vaccine series.

3 Polio

- For delayed or interrupted schedules initiate/resume schedule without repeating previous doses.

4 DTP-containing vaccines (Diphtheria, Tetanus and Pertussis)

- The need for early infant vaccination with DTP-containing vaccine is principally to ensure rapid protection against pertussis, because severe disease and death from pertussis is almost entirely limited to the first weeks and months of life.
- A primary series of 3 doses of DTP-containing vaccine is recommended, with the first dose administered as early as 6 weeks of age. Subsequent doses should be given with an interval of at least 4 weeks between doses. The third dose of the primary series should be completed by 6 months of age if possible.
- If either the start or the completion of the primary series has been delayed, the missing doses should be given at the earliest opportunity with an interval of at least 4 weeks between doses.
- 3 booster doses of diphtheria toxoid-containing vaccine should be provided during childhood and adolescence. The diphtheria booster doses should be given in combination with tetanus toxoid using the same schedule, i.e. at 12–23 months of age, 4–7 years of age, and 9–15 years of age, using age-appropriate vaccine formulations. Ideally, there should be at least 4 years between booster doses.
- Tetanus - To ensure lifelong protection against tetanus in all people should receive 6 doses (3 primary plus 3 booster doses) of tetanus toxoid-containing vaccine (TTCV) through routine childhood immunization schedules.
- The 3 TTCV booster doses should be given at: 12–23 months of age; 4–7 years of age; and 9–15 years of age. Ideally, there should be at least 4 years between booster doses.
- National vaccination schedules can be adjusted within the age limits specified above to enable programmes to tailor their schedules based on local epidemiology, the objectives of the immunization programme, any particular programmatic issues and to better align tetanus vaccination with the immunological requirements of other vaccines (particularly for pertussis and diphtheria).
- Opportunities for tetanus vaccination may be taken at the second year of life contacts for alternative PCV schedule 2+1, MCV second dose, and meningococcal A-containing vaccines, as well as pre-adolescence and adolescence contacts including for HPV vaccination.
- To provide and sustain both tetanus and diphtheria immunity throughout the life course and for both sexes, age-appropriate combinations of tetanus and diphtheria toxoids should be used. For children <7 years of age DTwP or DtaP combinations may be used. For children aged 4 years and older Td containing vaccine may be used and is preferred.
- From 7 years of age only Td combinations should be used. Age-appropriate combinations containing pertussis vaccine with low-dose diphtheria antigen are also available.
- If tetanus vaccination is started during adolescence or adulthood, a total of only 5 appropriately spaced doses are required to obtain lifelong protection.
- Pregnant women and their newborn infants are protected from birth-associated tetanus if the mother received either 6 TTCV doses during childhood or 5 doses if first vaccinated during adolescence/adulthood (documented by card, immunization registry and/or history) before the time of reproductive age. Vaccination history should be verified in order to determine whether a dose of TTCV is needed in the current pregnancy.
- WHO confirms its earlier recommendation to shift from the use of single-antigen TT to combinations containing diphtheria toxoid, i.e. DT or Td vaccines, which has not yet been implemented in many countries despite the negligible price differential between TT and DT/Td vaccines. Countries and partners are urged to take steps to accelerate this shift.
- TTCVs can be used in immunocompromised persons including HIV-infected individuals, but the immune response may be lower than in fully immunocompetent persons. All HIV-infected children should be vaccinated against tetanus following the vaccine recommendations for the general population.
- Pertussis vaccine: Both ap-containing and wp-containing vaccines have excellent safety records.
- Available evidence indicates that licensed ap and wp vaccines have equivalent initial effectiveness in preventing disease in the first year of life, but that there is more rapid waning of immunity, and possibly a reduced impact on transmission, with ap relative to wp vaccines.
- National programmes currently administering wp vaccination should continue to use wp vaccines for primary vaccination series. Surveillance and modelling data suggest that the use of ap vaccines may result in a resurgence of pertussis after a number of years.
- National programmes currently using ap vaccine may continue using this vaccine but should consider the need for additional booster doses and strategies to prevent early childhood
National programmes may consider the vaccination of pregnant women with 1 dose of Tdap. Vaccinating pregnant women and household contacts is likely to be the most cost-effective additional strategy for preventing disease in infants too young to be vaccinated and appears to be more effective and favourable than cocooning.

Pertussis containing booster - A booster dose is recommended for children aged 1–6 years, preferably during the second year of life (≥6 months after last primary dose), unless otherwise indicated by local epidemiology; the contact could also be used to catch up on any missed doses of other vaccines. This schedule should provide protection for at least 6 years for countries using wP vaccine. For countries using aP vaccine, protection may decline appreciably before 6 years of age.

Vaccinating pregnant women and household contacts - Vaccination of pregnant women is likely to be the most cost-effective additional strategy for preventing disease in infants too young to be vaccinated and appears to be more effective and favourable than cocooning.

Table 3: Recommendations for Interrupted or Delayed Routine Immunization (Updated August 2018)

<table>
<thead>
<tr>
<th>Haemophilus influenzae type b (Hib)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The use of Hib vaccines should be part of a comprehensive strategy to control pneumonia including exclusive breastfeeding for six months, hand washing with soap, improved water supply and sanitation, reduction of household air pollution, and improved case management at community and health facility levels.</td>
</tr>
<tr>
<td>WHO recommends that any one of the following Hib immunization schedules may be followed: 3 primary doses without a booster (3p); 2 primary doses plus a booster (2p+1); and 3 primary doses with a booster (3p+1).</td>
</tr>
<tr>
<td>Because serious Hib disease occurs most commonly in children aged between 4 months and 18 months, immunization should start from 6 weeks of age, or as early as possible thereafter.</td>
</tr>
<tr>
<td>The number of primary doses should be set after consideration of the local epidemiology, vaccine presentation (Hib conjugate monovalent vaccine versus Hib conjugate vaccine in combination with other antigens) and how this fits into the overall routine immunization schedule.</td>
</tr>
<tr>
<td>In countries where the peak burden of severe Hib disease occurs in young infants, providing 3 doses of vaccine early in life may confer a greater benefit.</td>
</tr>
<tr>
<td>In some settings (e.g. where the greatest disease morbidity and mortality occur later, or where rate reductions of disease are not fully sustained after the routine use of Hib vaccine), it might be advantageous to give a booster dose by following either a 2p+1 or 3p+1 schedule.</td>
</tr>
<tr>
<td>The interval between doses should be at least 4 weeks if 3 primary doses are given, and at least 8 weeks if 2 primary doses are given. Booster doses should be administered at least 6 months after completion of the primary series.</td>
</tr>
<tr>
<td>If the vaccination course has been interrupted, the schedule should be resumed without repeating the previous dose. Children who start vaccination late, but are aged under 12 months, should complete the vaccination schedule (e.g. have 3 primary doses or 2 primary doses plus a booster).</td>
</tr>
<tr>
<td>When a first dose is given to a child older than 12 months of age, only one dose is recommended.</td>
</tr>
</tbody>
</table>

Hib vaccine is not required for healthy children after 5 years of age. The Hib conjugate vaccine is contraindicated in people with known allergies to any component of the vaccine. There are no other known contraindications or precautions.

5 Pneumococcal (Conjugate)

Pneumococcal conjugate vaccines (PCVs) are considered safe in all target groups for vaccination, also in immunocompromised individuals. The vaccines are not currently licensed for use in age groups that include women of childbearing age. Although theoretically highly unlikely to be harmful, there is no information on the safety of PCV10 and PCV13 during pregnancy.

Except for very rare anaphylactic reactions that may follow the administration of any medicine, there are no contraindications to the use of these vaccines. However, it is advisable to defer vaccination until after an acute infection with temperature >39°C.

When injected at different sites, PCVs can be administered concurrently with any other vaccines in infant immunization programmes.

When primary immunization is initiated with one of these vaccines, it is recommended that remaining doses are administered with the same product. Interchangeability between PCV10 and PCV13 has not yet been documented. However, if it is not possible to complete the series with the same type of vaccine, the other PCV product should be used.

For infants, 3 primary doses (the 3p+0 schedule) or, as an alternative, 2 primary doses plus a booster (the 2p+1 schedule).

In choosing between the 3p+0 and 2p+1 schedules, countries should consider locally relevant factors including the epidemiology of pneumococcal disease, the likely coverage, and the timeliness of the vaccine doses.

If disease incidence peaks in young infants (<32 weeks of age), a 2p+1 schedule might not offer optimal individual protection for certain serotypes (e.g. 6B, 23F) compared to a 3p+0 schedule, particularly in the absence of herd protection.

In contrast, higher antibody levels are induced by the third (booster) dose in a 2p+1 schedule compared to the third dose in a 3p+0 schedule. This may be important for duration of protection or effectiveness against some serotypes.

If the 3p+0 schedule is used, vaccination can be initiated as early as 6 weeks of age with an interval between doses of 4–8 weeks, depending on programmatic convenience.

If the 2p+1 schedule is selected, the 2 primary doses should ideally be completed by six months of age, starting as early as 6 weeks of age with a minimum interval of 8 weeks or more between the two doses (for infants aged ≥7 months a minimum interval of 4 weeks between doses is possible). One booster dose should be given between 9–15 months of age.

Previously unvaccinated or incompletely vaccinated children (including those who had laboratory confirmed invasive pneumococcal disease) should be vaccinated using the recommended age-appropriate regimens. Interrupted schedules should be resumed without repeating the previous dose.

HIV-positive infants and pre-term neonates who have received their 3 primary vaccine doses before reaching 12 months of age may benefit from a booster dose in the second year of life.

Catch-up vaccination as part of introduction will accelerate herd protection and therefore the PCV impact on disease and mortality. Maximized protection at the time of introduction of PCV10 or PCV13 can be achieved by providing 2 catch-up dose(s) at an interval of at least 8 weeks to unvaccinated children aged 12–24 months and to children aged 2–5 years who are at high risk of pneumococcal infection.

Further data are needed from different epidemiological settings on the impact of large-scale
PCV vaccination of individuals >50 years of age in order to establish the relative priority of immunization programmes in that age group. However, given the documented effects of herd protection in adult age groups following routine infant immunization with PCV7, higher priority should normally be given to introducing and maintaining high coverage of infants with PCVs.

- The use of pneumococcal vaccine should be seen as complementary to the use of other pneumonia-control measures, such as appropriate case management, promotion of exclusive breastfeeding for first 6 months of life, and the reduction of known risk factors, such as indoor pollutants and tobacco smoke.

- For polysaccharide pneumococcal vaccine see position paper: Weekly Epid. Record (2008, 83: 373-384) [pdf 308KB]

- In resource-limited settings where there are many competing health priorities, evidence does not support routine immunization of the elderly and high-risk populations with PPV23. Also, because of the low level of evidence for benefit, routine PPV23 vaccination of HIV-infected adults is not recommended in such settings. In countries that do not routinely administer PPV23 to high-risk populations, data are insufficient to recommend introducing this vaccine to reduce the morbidity and mortality associated with influenza.

7 Rotavirus

- Recommended to be included in all national immunization programmes.

- Early immunization is favoured with the first dose of rotavirus vaccine to be administered from 6 weeks of age, however, in order to benefit those who may come late infants can receive doses without age restriction. Because of the typical age distribution of rotavirus gastroenteritis (RVGE), rotavirus vaccination of children >24 months of age is not recommended.

- Rotarix is administered orally in a 2-dose schedule at the time of DTPPCV with an interval of at least 4 weeks between doses.

- RotaTeq vaccine is administered orally in a 3-dose schedule at the time of DTPPCV with an interval of at least 4 weeks between doses.

- Rotavac vaccine is administered orally as a 3 dose schedule at the time of DTPVCV, with an interval of at least 4 weeks between doses.

- Rotavirus vaccinations can be administered simultaneously with other vaccines in the infant immunization programme.

- Apart from a low risk of intussusception (about 1-2 per 100 000 infants vaccinated) the current rotavirus vaccines are considered safe and well tolerated.

- Severe allergic reaction (e.g. anaphylaxis) after a previous dose, and severe immunodeficiency including severe combined immunodeficiency, are contraindications for rotavirus vaccination.

- Precautions are necessary if there is a history of intussusception or intestinal malformations, chronic gastrointestinal disease, and severe acute illness. Vaccination should be postponed in case of ongoing acute gastroenteritis or fever with moderate to severe illness.

- The use of rotavirus vaccines should be part of a comprehensive strategy to control diarrhoeal diseases with the scaling up of both prevention (exclusive breastfeeding for 6 months, vitamin A supplementation, safe drinking water, hygiene/handwashing with soap, and sanitation) and support interventions (AIDs, supplementary food programs, safe sanitation).

8 Measles

- Reaching all children with 2 doses of measles vaccine should be the standard for all national immunization programmes. In addition to the first routine dose of MCV1, all countries should add a second routine dose of MCV2 to their national immunization schedules regardless of the level of MCV1 coverage.

- In countries with ongoing transmission in which the risk of measles mortality remains high, MCV1 should be given at age 9 months. MCV2 should be given between 15-18 months, as providing MCV2 in the 2nd year of life reduces the rate of accumulation of susceptible children and the risk of an outbreak. The minimum interval between MCV1 and MCV2 is 4 weeks.

- Because many cases of measles occur in children aged >12 months who have not been vaccinated, routine MCV1 should not be limited to infants aged 9-12 months and routine delivery of MCV2 should not be limited to infants 15 to 18 months of age. Every opportunity (e.g. when children come into contact with health services) should be taken to vaccinate all children that missed one or both MCV routine doses, particularly those under 15 years of age. Policies which prohibit use of vaccine in children >1 year of age, older children and teenagers should be changed to allow these individuals to be vaccinated.

- In countries with low levels of measles transmission (i.e. those that are near elimination or verified as having eliminated endemic measles virus transmission) and therefore the risk of measles is low, MCV1 may be administered at 12 months of age to take advantage of the higher seroconversion rates achieved at this age. In these countries, the optimal age for delivering MCV2 is based on programmatic considerations to achieve the highest coverage of MCV2 and, hence, the highest population immunity. Administration of MCV2 at 15-18 months of age ensures early protection of the individual, slows accumulation of susceptible, non-vaccinated children, and may correspond to the schedule for other routine childhood vaccinations (for example, a DTP-containing booster, PCV, or meningococcal vaccines). This measure also supports the establishment of a policy on immunization and other health interventions in the second year of life. If MCV1 coverage is high (>90%) and school enrolment is high (>95%), antigenic competition at school entry may prove an effective strategy for achieving high coverage and preventing outbreaks in schools.

- For programmatic reasons (e.g. to reduce cold storage needs and vaccine wastage), it is recommended that the same vaccine formulation is used for both routine doses of MCV.

- In the following situations, a supplementary dose of MCV should be given to infants from 6 months of age: (1) during a measles outbreak as part of outbreak control; (2) during campaigns in settings where the risk of measles among infants <9 months of age remains high (e.g. in endemic countries experiencing regular outbreaks); (3) for internally displaced populations and refugees, and populations in conflict zones; (4) for individual infants at high risk of contracting measles (e.g. contacts of known measles cases or in settings with increased risk of exposure during outbreaks such as day-care facilities); (5) for infants travelling to countries experiencing measles outbreaks; (6) for infants known to be HIV-infected or exposed (i.e. born to an HIV-infected woman).

- MCV administered before 9 months of age should be considered a supplementary dose and recorded on the child’s vaccination record as “MCV0”. Children who receive MCV0 should also receive MCV1 and MCV2 at the recommended ages according to the national schedule.

- Given the severe course of measles in patients with AIDS, measles vaccination should be routinely administered to potentially susceptible, asymptomatic HIV infected children and adults. Vaccination may even be considered for those with symptomatic HIV infection if they are not severely immunosuppressed according to conventional definitions. In areas where there is a high incidence of both HIV infection and measles, an initial dose of MCV may be offered as early as age 6 months (recorded as MCV0). The 2 routine doses of MCV (MCV1 and MCV2) should then be administered to these children according to the national immunization schedule.

- An additional dose of MCV should be administered to HIV-infected children receiving HAART following immunization schedule. If CD4+ T lymphocyte counts are monitored, an additional dose of MCV should be administered when immunization reconstitution has been achieved, e.g. when the CD4+ T lymphocyte count reaches 20–25%. Where CD4+ T lymphocyte monitoring is not available, children should receive an additional dose of MCV 6–12 months after initiation of HAART.

- A supplementary dose of MCV (recorded as MCV0) should be considered for infants known to be exposed (i.e. born to an HIV-infected woman) or soon after diagnosis of HIV infection in children older than 6 months who are not receiving HAART and for whom the risk of measles is high, with the aim of providing partial protection until they are revaccinated after immune
reconstitution with HAART.

- Mild concurrent infections are not a contraindication to vaccination. As a precautionary measure, measles vaccine – alone or in combination with other vaccines – should be avoided during pregnancy. MCVs should not be given to individuals with a history of anaphylactic reactions or severe allergic reactions to any component of the vaccine (e.g. neomycin or gelatin) or those with any form of severe immunosuppression.

9 Rubella

- All countries that have not yet introduced rubella vaccine, and are providing 2 doses of measles vaccine using routine immunization, or SIAs, or both, should consider including rubella containing vaccines (RCVs) in their immunization programme. Countries planning to introduce RCVs should review the epidemiology of rubella, including the susceptibility profile of the population; assess the burden of CRS; and establish rubella and CRS prevention as a public health priority.
- Because rubella is not as highly infectious as measles and because the effectiveness of 1 dose of an RCV is > 95% even at 9 months of age, only 1 dose of rubella vaccine is required to achieve rubella elimination if high coverage is achieved. However, when combined with measles vaccination, it may be easier to implement a second dose of RCV’s using the same combined MR vaccine or MMR vaccine for both doses.
- RCV’s can be administered concurrently with inactivated vaccines. As a general rule, live vaccines should be given either simultaneously with RCV’s, or at least 4 weeks apart. An exception to this is oral polio vaccine, which can be given at any time before or after RCV’s without interfering in the response to either vaccine.
- Interference may occur between MMR and yellow fever vaccines if they are simultaneously administered to children < 2 years of age.
- Because of a theoretical, but never demonstrated, teratogenic risk rubella vaccination in pregnant women should be avoided in principle, and those planning a pregnancy are advised to avoid pregnancy for 1 month following vaccination.
- Administration of blood or blood products before or shortly after vaccination may interfere with vaccine efficacy. If using only rubella vaccines persons who received blood products should wait at least 3 months before vaccination and, if possible, blood products should be avoided for up to 2 weeks post-vaccination. Vaccinated persons are not eligible to donate blood for 1 month after vaccination.

10 Human Papillomavirus (HPV)

- Recommended target population for the prevention of cervical cancer: females aged 9–14 years, prior to becoming sexually active.
- HPV vaccines should be introduced as part of a coordinated strategy to prevent cervical cancer.
- A 2-dose schedule with a 6-month interval between doses is recommended for individuals receiving the first dose before 15 years of age. Those aged ≥15 years at the time of the second dose are also adequately covered by 2 doses.
- The initial vaccination of multiple cohorts of girls aged 9-14 is recommended when the vaccine is first introduced.
- If the interval between doses is shorter than 5 months, then a third dose should be given at least 6 months after the first dose.
- A 3-dose schedule (0, 1-2, 6 months) should be used for all vaccinations initiated ≥15 years of age, including in those younger than 15 years know to be immunocompromised and/or HIV infected (regardless of whether they are receiving antiretroviral therapy). It is not necessary to screen for HPV infection or HIV infection prior to HPV vaccination.
- These schedule recommendations apply to the bivalent, quadrivalent, and nonavalent vaccines.
- All three HPV vaccines can be co-administered with other live and non-live vaccines using separate syringes and different injection sites.
- Data on the safety of HPV vaccination in pregnancy are limited, and HPV vaccination of pregnant women should be avoided.
- Vaccination of secondary target populations, e.g. females aged ≥15 years or males, is recommended only if this is feasible, affordable, cost-effective, and does not divert resources from vaccination of the primary target population or from effective cervical cancer screening programmes.

11 Japanese Encephalitis (JE)

- JE vaccination should be integrated into national immunization schedules in all areas where JE is recognized as a public health priority.
- The most effective immunization strategy in JE endemic settings is a one-time campaign in the primary target population, as defined by local epidemiology (typically children aged <15 years), followed by incorporation of JE vaccine into the routine childhood immunization programme.
- The following vaccine dosing schedules and age of administration are recommended. The need for a booster dose in endemic settings has not been clearly established for any of the vaccines listed below:
 - Inactivated Vero cell-derived vaccine: Primary series according to manufacturer’s recommendations (these vary by product), generally 2 doses at 4-week intervals starting the primary series at ≥6 months of age in endemic settings
 - Live attenuated vaccine: Single dose administered at ≥8 months of age
 - Live recombinant vaccine: Single dose administered at ≥9 months of age
- Preferably, inactivated mouse brain-derived vaccines should be replaced by the newer generation JE vaccines discussed in this position paper. Inactivated mouse brain-derived vaccines may continue to play a role in combating JE in some countries, but overall these products have a less favourable safety profile due to their increased reactogenicity compared to newer JE vaccines. Other disadvantages include the variability of manufacturing, the cost, the higher number of doses required and the need for boosters.
- Despite a lack of comprehensive immunogenicity/effectiveness and safety data for all possible combinations of JE and other routine vaccines, co-administration for programmatic reasons seems acceptable, even in the context of mass campaigns.
- Inactivated JE vaccine can be used in immunocompromised persons including HIV-infected individuals, but the immune response may be lower than in fully immunocompetent persons. Inactivated Vero cell-derived vaccines should be used preferentially over live attenuated or live recombinant vaccines in immunocompromised persons. HIV testing is not a prerequisite for vaccination.
- If the JE risk is sufficient to warrant vaccination of pregnant women, inactivated Vero cell-derived vaccines should be used preferentially over live attenuated or live recombinant vaccines based on the general precautionary principle against using live vaccines in pregnant women especially if alternative types of vaccines are available. Pregnancy testing is not a prerequisite for JE vaccination. Inadvertent administration of live attenuated or live recombinant JE vaccine to a pregnant woman is not an indication for termination of the pregnancy.
12 Yellow Fever

- WHO recommends that all endemic countries should introduce YF vaccine into their routine immunization programmes.
- A single dose of YF vaccine is sufficient to confer sustained life-long protective immunity against YF disease; a booster dose is not necessary.
- It is recommended that YF vaccine be given to children at age 9-12 months at the same time as the measles vaccine.
- The vaccine is contraindicated in children aged <6 months and is not recommended for those aged 6-8 months, except during epidemics when the risk of infection with the YF virus is very high. Other contraindications for YF vaccination are severe hyper-sensitivity to egg antigens and severe immunodeficiency.
- Preventive mass vaccination campaigns are recommended for inhabitants of areas at risk of YF where there is low vaccination coverage. Vaccination should be provided to everyone aged ≥ 9 months, in any area with reported cases. Noting that YF is a live vaccine, a risk-benefit assessment should be undertaken for all pregnant and lactating women.
- Vaccine should be offered to all unvaccinated travelers aged ≥ 9 months, travelling to and from at-risk areas, unless they belong to the group of individuals for whom YF vaccination is contraindicated.
- YF vaccine may be administered simultaneously with other vaccines.

13 Tick-Borne Encephalitis (TBE)

- Since the incidence of tick-borne encephalitis may vary considerably between and even within geographical regions, public immunization strategies should be based on risk assessments conducted at country, regional or district level, and they should be appropriate to the local endemic situation. Therefore, establishing case reporting of the disease is essential before deciding on the most appropriate preventive measures to be taken.
- In areas where the disease is highly endemic (that is, where the average prevaccination incidence of clinical disease is ≥5 cases/100 000 population per year), implying that there is a high individual risk of infection, WHO recommends that vaccination be offered to all age groups, including children.
- Because the disease tends to be more serious in individuals aged >50–60 years this age group constitutes an important target for immunization.
- Where the prevaccination incidence of the disease is moderate or low (that is, the annual average during a 5-year period is <5/100 000) or is limited to particular geographical locations or certain outdoor activities, immunization should target individuals in the most severely affected cohorts.
- People travelling from non-endemic areas to endemic areas should be offered vaccination if their visits will include extensive outdoor activities.
- Vaccination against the disease requires a primary series of 3 doses; those who will continue to be at risk should probably have ≥1 booster doses.
- Within the considerable range of acceptable dose intervals, the relevant national authorities should select the most rational primary schedule for their national, regional or district immunization programmes.
- For the vaccines manufactured in Austria and Germany (FSME-Immun and Encepur) that can be given starting from > 1 year of age an interval of 1–3 months is recommended between the first 2 doses, and 5–12 months between the second and third doses. When rapid protection is required, for example for people who will be travelling to endemic areas, the interval between the first 2 doses may be reduced to 1–2 weeks.
- With the vaccines manufactured in the Russian Federation (TBE-Moscow and EnceVir) the recommended intervals are 1–7 months between the first 2 doses, and 12 months between the second and third doses. Booster doses are recommended every 3 years for those at continued risk of exposure.
- The currently recommended booster interval should be maintained until more data have been obtained on the duration of protection induced by the Russian vaccines.
- Regardless of the duration of the delay, interrupted schedules should be resumed without repeating previous doses.

14 Typhoid

- Typhoid vaccination programmes should be implemented in the context of other efforts to control the disease, including health education, water quality and sanitation improvements, and training of health professionals in diagnosis and treatment.
- Among the available typhoid vaccines, TCV is preferred at all ages in view of its improved immunological properties, use in younger children and expected duration of protection. Countries may consider the routine use of ViPS vaccine in individuals 2 years and older, and Ty21a vaccine for individuals more than 6 years of age.
- TCV - for infants and children from 6 months of age and in adults up to 45 years. Administration of TCV at the same time as other vaccine visits at 9 month of age or in the second year of life is encouraged. ViPS – single dose from 2 years of age. Ty21a – 3-doses to be administered orally every second day from 6 years of age.
- Catch-up vaccination with TCV up to 15 years of age is recommended when feasible and supported by epidemiological data.
- Typhoid vaccination is recommended in response to confirmed outbreaks of typhoid fever and may be considered in humanitarian emergency settings depending on the risk assessment in the local setting.
- The potential need for revaccination with TCV is currently unclear. Revaccination is recommended every 3 years for ViPS, and every 3-7 years for Ty21a.
- Use of the live attenuated Ty21a vaccine during pregnancy should be avoided because of theoretical safety concerns about potential adverse effects.

15 Cholera

- Appropriate case management, WaSH interventions, surveillance and community mobilization remain the cornerstones of cholera control. Vaccination should be implemented in relevant settings as part of comprehensive cholera control strategies or while other activities are being developed.
- WC vaccines (Shanchol, Euvchol, and mORCVAX) 2 doses should be given 14 days apart to individuals ≥1 year of age. For WC-RBS vaccine (Dukoral) 3 doses should be given to children 2-5 years of age, and 2 doses to children aged ≥6 years and adults, with an interval of 1-6 weeks between doses in both groups.
- Revaccination is recommended where there is continued risk of V. cholerae infection. For WC vaccines revaccination is recommended after 3 years. For WC-rBS vaccine: children age 2-5 years revaccination is recommended within 6 months. If less than 6 months have passed, 1
dose for revaccination. If more than 6 months have passed, the primary series of 3 doses should be repeated. For those aged ≥6 years of age, if less than 2 years have passed, 1 dose for revaccination. If more than 2 years have passed, the primary series of 2 doses should be repeated.

- In cholera-endemic countries, vaccination of the entire population (throughout a country regardless of risk) is usually not warranted. Vaccination policies and strategies should be guided by an assessment of the risk of cholera and targeted to cholera hotspots. Strategies targeting specific age groups at higher risk of disease may be considered.

- For control of cholera outbreaks vaccination should be considered to help prevent the spread to new areas. For vaccination campaigns, a single-dose strategy using WC vaccines (Shanchol, Euvchol or mORCVAX) could be considered in areas experiencing cholera outbreaks.

- During humanitarian emergencies with a risk of cholera, but without a current cholera outbreak, vaccination with OCV should be considered as an additional preparedness measure for outbreak prevention, depending on the local infrastructure (capacity to organize a vaccination campaign).

- Pregnant and lactating women and HIV infected individuals should be included in OCV campaigns since there is a high potential benefit and minimal risks.

16 Meningococcal

- Conjugate vaccines are preferred over polysaccharide vaccines due to their potential for herd protection and their increased immunogenicity, particularly in children <2 years of age.

- Both conjugate and polysaccharide vaccines are efficacious and safe when used in pregnant women.

- MenA conjugate vaccine (5µg) a 1-dose schedule is recommended at 9-18 months of age based on local programmatic and epidemiologic considerations. The vaccine should be administered by deep intramuscular injection, preferably in the anterolateral aspect of the thigh. There is no reason to expect interference when co-administered with other vaccines. The need for a booster dose has not been established.

- If in a specific context there is a compelling reason to vaccinate infants younger than 9 months, a 2-dose schedule should be used starting at 3 months of age, with an interval of at least 8 weeks between doses.

- For monovalent MenC conjugate vaccine one single intramuscular dose is recommended for children aged ≥12 months, teenagers and adults. Children 2-11 months require 2 doses administered at an interval of at least 2 months and a booster about 1 year after. If the primary series is interrupted, vaccination should be resumed without repeating the previous dose.

- Quadrivalent conjugate vaccines (A,C,W135,Y-D and A,C,W135,Y-CRM) should be administered as one single intramuscular dose to individuals ≥ 2 years. A,C,W135,Y-D is also licensed for children 9-23 months of age, and given as a 2-dose series, 3 months apart beginning at age 9 months. If the primary series is interrupted, vaccination should be resumed without repeating the previous dose.

- Meningococcal polysaccharide vaccines are less, or not, immunogenic in children under 2 years of age.

- Meningococcal polysaccharide vaccines can be used for those ≥ 2 years of age to control outbreaks in countries where limited economic resources or insufficient supply restrict the use of meningococcal conjugate vaccines. Polysaccharide vaccines should be administered to individuals ≥ 2 years old as one single dose. One booster 3-5 years after the primary dose may be given to persons considered to be a continued high risk of exposure, including some health workers. See position paper for details.

17 Hepatitis A

- Hepatitis A vaccination is recommended for inclusion in the national immunization schedule for children ≥ 1 year if indicated on the basis of incidence of acute hepatitis A, change in the endemicity from high to intermediate, and consideration of cost-effectiveness.

- In highly endemic countries almost all persons are asymptomatically infected with HAV in childhood, which effectively prevents clinical hepatitis A in adolescents and adults. In these countries, large-scale vaccination programmes are not recommended.

- Countries with improving socioeconomic status may rapidly move from high to intermediate endemicity. In these countries, a relatively large proportion of the adult population is susceptible to HAV and large-scale hepatitis A vaccination is likely to be cost-effective and therefore is encouraged.

- For individual health benefit targeted vaccination of high-risk groups should be considered in low and very low endemicity settings. Those at increased risk of hepatitis A include travelers to areas of intermediate or high endemicity, those requiring life-long treatment with blood products, men who have sex with men, workers in contact with non-human primates, and injection drug users. In addition, patients with chronic liver disease are at increased risk for fulminating hepatitis A and should be vaccinated.

- Inactivated HAV vaccine is licensed for intramuscular administration in a 2-dose schedule with the first dose given at the age of 1 year or older. The interval between the first and second dose is flexible (from 6 months up to 4-5 years) but is usually 6-18 months. Countries may consider a 1-dose schedule as this option seems comparable in terms of effectiveness, and is less expensive and easier to implement. However, in individuals at substantial risk of contracting hepatitis A and in immunocompromised individuals, a 2-dose schedule is preferred. Inactivated HAV vaccines produced by different manufacturers, including combined hepatitis A vaccines, are interchangeable. Apart from severe allergic reaction to the previous dose, there is no contraindication to their use. These vaccines can be co-administered simultaneously with other routine childhood vaccines, and should be considered for use in pregnant women at definite risk of HAV infection.

- Live attenuated HAV vaccine is administered as a single subcutaneous dose to those ≥ 1 year of age. Severe allergy to components included in the live attenuated hepatitis A vaccine is a contraindication to their use. As a rule, live vaccines should not be used in pregnancy or in severely immunocompromised patients. There is no information available on co-administration of live attenuated hepatitis A vaccines with other routinely used vaccines.

- Vaccination against hepatitis A should be part of a comprehensive plan for the prevention and control of viral hepatitis, including measures to improve hygiene and sanitation and measures for outbreak control.

18 Rabies

- Production and use of nerve-tissue vaccines should be discontinued and replaced by vaccines based on RABV grown in cell culture or embryonated eggs (CCEVs).

- There are two main immunization strategies for the prevention of human rabies: (i) PEP which involves washing out the RABV-exposure site, together with RIG administration if indicated, and the administration of a course of several doses of rabies vaccine; (ii) PreP which is the administration of several doses of rabies vaccine before exposure to RABV. PreP is recommended for individuals at high risk of RABV exposure. These include sub-populations in highly endemic settings with limited access to timely and adequate PEP, individuals at occupational risk, and travellers who may be at risk of exposure.

- For both PEP and PreP, vaccines can be administered by either the ID or IM route. One ID dose is 0.1 mL of vaccine; one IM dose is 0.5 mL or 1.0 mL depending on the product.
The indication and procedure for PEP depend on the type of contact with the suspected rabid animal and immunization status of the patient. For category I exposures, no PEP is required; for category II, immediate vaccination is recommended; for category III, immediate vaccination is recommended, and administration of RIG, if indicated.

PrEP schedule: 2-site ID vaccine administered on days 0 and 7. If IM administration is used, WHO recommends a 1-site IM vaccine administration on days 0 and 7.

If any doses are delayed, vaccination should be resumed, not restarted. A change in the route of administration or in vaccine product during a PEP or PrEP course is acceptable if such a change is unavoidable.

No further PrEP booster doses following a primary series of PrEP or PEP are required for individuals living in, or travelling to, high-risk areas.

Professionals who are at continual or frequent risk of exposure through their activities should have regular serological monitoring. If VNA levels fall to <0.5 IU/mL, a 1-site ID or a 1-site IM PrEP booster vaccination is recommended. If serological testing is not available for those at continual or frequent occupational risk, a periodic 1-dose (ID or IM) PrEP booster vaccination can be considered based on the assessment of relative risk.

Screening tests would need to be highly specific to avoid vaccinating truly seronegative persons and to have high sensitivity to ensure that a high proportion of seropositive persons are vaccinated.

Communication needs to ensure appropriate and full disclosure of the risks of vaccination of pregnant women that occurred during clinical trials have not identified a specific risk.

The optimal age group to be targeted is the age before which severe dengue disease incidence is highest; this can be ascertained from national and subnational routine hospital laboratory-confirmed surveillance data.

CVD-TDV is recommended as a 3-dose series given 6 months apart. Should a vaccine dose be delayed for any reason, it is not necessary to restart the course and the next dose in the series should be administered as soon as possible.

CVD-TDV is not recommended in pregnant and lactating women because insufficient data are available on its use in pregnancy. However, the limited data generated from inadvertent vaccination of pregnant women that occurred during clinical trials have not identified a specific risk.

Due to lack of data, CVD-TDV is contraindicated in immunocompromised individuals.

Position paper reference: Weekly Epid. Record (2018, 93, 457-76) [pdf 513KB]. This paper is currently under revision.

Vaccination should be considered as part of an integrated dengue prevention and control strategy.

Countries should consider introduction of the dengue vaccine CVD-TDV only if the minimization of risk among seronegative individuals can be assured.

For countries considering vaccination as part of their dengue control programme, pre-vaccination screening is the recommended strategy.

If pre-vaccination screening is not feasible, vaccination without individual screening could be considered in areas with recent documentation of seroprevalence rates of at least 80% by age 9 years.

Decisions about implementing a seroprevalence criterion based vaccination strategy without individual screening will require serosurveys at high resolution, i.e. at district and sub-district level.

Depending on the goal of the vaccination programme, 1-2 doses should be given with the first dose administered at 12-18 months of age. The minimum interval between doses should be as recommended by the manufacturer, ranging from 4 weeks to 3 months.

Countries with a high average age (≥ 15 years) of acquisition of infection could consider an alternative vaccination strategy such as vaccination of adolescents and adults without evidence of varicella immunity. This strategy requires a 2-dose schedule.

Countries where varicella is an important public health burden could consider introducing varicella vaccination in the routine childhood immunization programme. However, resources should be sufficient to ensure reaching and sustaining vaccine coverage ≥ 80%. Decision-making on childhood varicella vaccination should also include consideration of the possible impact on herpes zoster.

Countries with existing influenza vaccination programmes targeting any of these additional groups should continue to do so and should incorporate immunization of pregnant women into such programmes.

A single dose is appropriate for those ≥ 9 years of age, including pregnant women. Inactivated influenza vaccine is safe to give throughout pregnancy.

Annual vaccination (or re-vaccination, if the vaccine strains are identical) is recommended. Previously vaccinated children 6-59 months require only one-dose.

Countries with varicella is an important public health burden could consider introducing varicella vaccination in the routine childhood immunization programme. However, resources should be sufficient to ensure reaching and sustaining vaccine coverage ≥ 80%. Decision-making on childhood varicella vaccination should also include consideration of the possible impact on herpes zoster.

Countries with a high average age (≥ 15 years) of acquisition of infection could consider alternative vaccination strategies such as vaccination of adolescents and adults without evidence of varicella immunity. This strategy requires a 2-dose schedule.

Varicella vaccination is contraindicated during pregnancy and pregnancy should be delayed for 4 weeks after vaccination. Termination of pregnancy is not indicated if vaccination was carried out inadvertently during pregnancy.

Varicella vaccine can be administered concomitantly with other vaccines. Unless given together with other live viral vaccines (measles, MR, MMR), it should be administered at a minimum interval of 28 days.
• Countries should consider vaccination of potentially susceptible health-care workers (i.e. unvaccinated and with no history of varicella) with 2 doses of varicella vaccine.

Table 3: Recommendations for Interrupted or Delayed Routine Immunization (Updated August 2018)