GVIRF 2016
Schistosomiasis Vaccine Updates

Annie Mo, Ph.D., Program Officer
Parasitology and International Programs Branch
Division of Microbiology and Infectious Diseases
National Institute of Allergy and Infectious Diseases
National Institutes of Health
Outline of Presentation

- Rationale for a Schistosomiasis Vaccine
 - Burden of Disease
 - Objectives and Comparative Advantages
 - Scientific and Technical Feasibility

- Current Status of R&D Efforts

- Challenges, Gaps and Opportunities
Schistosomiasis: Burden of Disease

- ~700M people in 78 countries at risk
- ~258M in need of treatment (2014)
 - 61.6M received treatment
- Tens of millions debilitating chronic morbidity
 - 3.31M Disability-Adjusted Life Year (DALY) annually

Hotez et al. PLOS NTD, 2014, July Vol. 8
http://www.who.int/mediacentre/factsheets/fs115/en/
Pathology of Schistosomiasis

- **Acute**
 - Allergic dermatitis
 - Katyama fever

- **Chronic**
 - Hepato-splenomegaly
 - Cystitis and urethritis w/ hematuria

- **Sequelae**
 - Bladder cancer
 - Female infertility
 - Risk of HIV transmission

Affected Organs

<table>
<thead>
<tr>
<th>Affected Organs</th>
<th>Species</th>
<th>Geographical distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic-Intestinal</td>
<td>S. mansoni</td>
<td>Africa, the Middle East, the Caribbean, Brazil, Venezuela and Suriname</td>
</tr>
<tr>
<td></td>
<td>S. japonicum</td>
<td>China, Indonesia, the Philippines</td>
</tr>
<tr>
<td>Urogenital</td>
<td>S. haematobium</td>
<td>Africa, the Middle East, Corsica (France)</td>
</tr>
</tbody>
</table>
Schistosomiasis Vaccines: An Identified Priority

The Most Feasible and Needed
(Science, January 2016)

- Ebola Sudan
- Chikungunya
- MERS
- Lassa fever
- Marburg
- Paratyphoid fever
- Schistosomiasis
- Rift Valley fever
- SARS
- Hookworm

The Most Important Diseases Without Vaccines
(Vaccine Nation, 14 August 2013)

- Chagas’ Disease
- Chikungunya
- Cytomegalovirus
- Dengue
- HIV
- Hookworm
- Leishmaniasis
- Malaria
- Respiratory Syncytial Virus
- Schistosomiasis
Global funding for schistosomiasis for the period 2007-2014 amounted to ~$214M.

During the same period, ~16% ($35M) of these funds were invested in vaccine R&D.
Global elimination achievable in some focal areas through MDA;

- Integrated approach with other intervention needed;
 - *e.g.*, *vaccine*

- Vaccine strategies complementary to existing control programs;

- Target to different forms of schistosomiasis.
Schistosomiasis Vaccine: Scientific Rationale

- Age-dependent concomitant immunity;
- Putative resistant individuals (endemic normals);
- Irradiated cercariae conferring up to 80% protection in animals;
- Significant efficacy with recombinant veterinary vaccines against other multicellular parasites
 - cysticercosis (*Taenia solium*)
 - cystic echinococcosis (*Echinococcus granulosus*)
Schistosoma Life Cycle & Vaccine Antigens

Candidates:
- Sh28 GST
- Sm14
- Sm-TSP2
- Sm-p80

Vaccine Targets:
- Anti-infection
- Anti-morbidity
- Transmission blocking
Sh28GST (Glutathione-S-Transferase)/Alum Vaccine for Urinary Schistosomiasis Recurrences

Phase I (Vaccine)
- Phase Ia
 - Healthy Adult (Europe)
 - N=24
 - Safety & Imm.
- Phase Ib
 - Healthy Children (Senegal)
 - N=24
 - Safety & Imm.

Phase II (Vaccine+PZQ Treatment)
- Phase IIa/b
 - Infected Adult (Senegal)
 - N=40
 - Safety & Imm.
- Phase IId
 - Infected Children (Niger)
 - N=24
 - Safety & Imm.

Phase III (Vaccine+PZQ Treatment)
- Phase III
 - Infected Children (Senegal)
 - N=250
 - Efficacy (delay in pathological relapses), Safety & Imm.
 - 3 year follow-up after 1st immunization

Safety and Immunogenicity of rSh28GST Antigen in Humans: Phase 1 Randomized Clinical Study of a Vaccine Candidate against Urinary Schistosomiasis

PlosNTD, 2012

Gilles Riveau¹, Dominique Deplanque²,³, Franck Remoué¹, Anne-Marie Schacht¹, Hubert Vodouhnon², Monique Capron¹, Michel Thiry⁴, Joseph Martial⁴, Christian Libersa²,³, André Capron¹

1 Inserm – Université Lille 2, Institut Pasteur de Lille, Lille, France, 2 Inserm CIC-CRB 9301, CHRU, Lille, France, 3 Université Lille – Nord de France, Département de Pharmacologie Médicale, Faculté de Médecine, Lille, France, 4 Euregentec, Ferc Scientifique, Seraing, Belgium
Sm-14/GLA-SE Vaccine Candidate

- Fatty acid binding protein, supports fatty acid transportation;
- 65-90% protection against S.m. challenges;
- Complete protection against Fasiola hepatica challenges;
- Development path:
 - Veterinary use again liver fluke
 - Human vaccine against Schistosoma
- Phase I trial in Brazil completed: safe&immunogenic (Vaccine, 2016);
Sm Tetraspanin Vaccine: Sm-TSP2/Adjuvant

- Large extracellular domain of the Sm-TSP2, 9 kDa, expressed in *Pichia*;

- On the surface of the parasite tegument, important for parasite development and maturation;

- Response to IgG of putatively resistant individuals;

- Reducing adult worm (50-60%) and eggs (60-75%) in *S.m.* infected mouse model.

Tran et al Nat Med, 2006
Loukas et al, International J Path., 2006
Curti, et al, Hum Vac Immu 2013
Jia et al, JBC, 2014
Sm-TSP/Adjuvant Clinical Evaluation in the Field

Phase Ia
US, Adult
N=72
Fully enrolled, vaccination completed

Phase Ib
Brazil, Adult
N=60
Protocol development

Phase I, II & III. Brazil
Adult or Children
Trials
Other endemic areas
Adult or Children
The Sm-p80 Vaccine Reduced Worm Burden, Egg Shedding, and Pathology in Baboons

Calpain subunit Sm-p80

GLA-SE

>> cGMP production 4Q2017
Antigen Discovery via Differential Screening Using Samples from Endemic Areas

Whole Proteom Library Phase Display (~10^6 clones)

Protein Array (992 Proteins, 1600 Arrays)

Paravac, SchistoVac Projects (funded by EU)

NIH R01AI101274

NIH P50 AI098507
Challenges and Opportunities: Preferred Product Characteristics & Clinical Development

- Modeling is valuable in defining TPP
- Provide >75% protection against infection for 2-3 yrs
 - Parasite(s): all three parasites preferred;
 - Target population: High risk adults or school age children;
- Clinical evaluation is feasible
 - Efficacy readout: egg output (or worm burden);
 - Sensitive assays for efficacy trials need to be established;
 - Human challenge model for testing deemed not feasible at the time.
- Collaborative research & synergized effort are encouraged

Schistosomiasis Vaccine Clinical Development and Product Characteristics
Mo et al., 2015
A vaccine is needed to achieve and sustain the ultimate control and elimination;

Clinical evaluation in the field is possible;

New vaccine candidates are on the horizon;

Vaccine R&D pipeline are weak;

Collaboration and partnership are needed.
Thank You!