Progress towards vaccines against TB

Gerald Voss, Ph.D.
Scientific Advisor, TuBerculosis Vaccine Initiative
Board Vice-President, Global HIV Vaccine Enterprise
The problem

- Estimated 1/3 of world population infected
- 10% will develop TB
- 10.4 million cases and 1.4 million deaths in 2016
- WHO End TB strategy: 90% reduction in incidence by 2035
TB and AMR

- Better TB drugs becoming available
- Correlation between antibiotic use and resistance
- Vaccines reduce antibiotic use, reduce AMR
- Need for a TB vaccine as part of the global emergency response to AMR
BCG, the world’s most widely used vaccine

- Used in many national immunization programs with high coverage
- Different strains used for routine vaccination
- Efficacious against disseminated TB in children
- Estimated 117,132 deaths prevented per birth cohort during first 15 years of life
- Protection against leprosy
- Other non-specific (immuno-modulatory) effects suspected

- Variable protection from infection or pulmonary TB
- Inconsistent protection in adolescence
- Safety considerations in HIV-infected infants and children

- The BCG vaccine has not stopped the epidemic
Tb incidence per age group

Target populations and goals

• WHO draft Preferred Product Characteristics (soon final)

• Prevention of active pulmonary disease in adolescents and adults
 • Individual benefit
 • Reduction in transmission

• Prevention of TB disease, including severe, disseminated TB, TB meningitis and pulmonary TB, in infants and young children
 • Maintain and expand benefits of BCG (replace or boost)

http://www.who.int/immunization/research/ppc-tpp/WHO_new_TB_vaccine_PPC_20180116.pdf?ua=1
Key areas of focus and opportunities

• Rational investment decisions and portfolio management
 • Stage gating criteria
Stages and Gates for a TB vaccine

- **Stage A:** Discovery
- **Stage B:** POC studies

Preclinical Development, CMC and animal studies
- **Stage C:** Preclinical evaluations
- **Stage D:** Prepare FIH/Ph 1

Clinical studies, CMC: scale up and validation
- **Stage E:** Prepare FIH/Ph 1
- **Stage F:** Ph2
- **Stage G:** Ph 2b
- **Stage H:** Ph 3

Registration

Legend:
- Stage (period during which one conducts the activities described in the relevant stage)
- Gate (point at which one applies Gating criteria to decide whether move to next stage)
- Critical investment Gate
Stage gate process

• Criteria were initially defined in 2012 and now revised by Aeras and TBVI and validated through broad external stakeholder consultations

• Stage Gates are a versatile tool to accelerate TB vaccine candidates development

• Facilitate global TB vaccine portfolio management

• An offer to researchers, developers, funders and other decision-makers

• Will go online in summer of 2018
Pre-Clinical TB Vaccine Pipeline

- MTBVAC + (Inactivated) Biofabri, TBVI, Univ. Zaragosa
- rBCG-zmp1 Univ. of Zurich, TBVI, Aeras
- Therapeutic MVA Transgene , TBVI
- ChAdOx1.85A/PPE15 Univ. of Oxford, TBVI
- H64+CAF01 SSI, TBVI
- CMV-6Ag Aeras, Vir Biotech, OHSU
- ChAd3/MVA-5Ag(AE) Aeras, GSK, Transgene

Legend:
- Viral Vector
- Protein / Adjuvant
- Mycobacterial – Whole Cell or Extract
Key areas of focus and opportunities

- Rational investment decisions and pipeline management
 - Stage gating criteria
- Discovery research to feed the early pipeline
 - Technology platforms and antigens
 - Host-directed therapies
 - Alternative immunization routes
- Preclinical models to prioritize candidates
 - Pertinent models to answer scientific questions (i.v. BCG)
 - Supportive evidence for evaluation of novel candidates in clinical trials
 - Ultimate validation from a clinical efficacy signal
- Immune correlates and biomarkers to predict vaccine efficacy
 - Exploit the signal from BCG revaccination
 - Biobanks from clinical trials
 - Novel assays (microbial growth inhibition)
Key areas of focus and opportunities

• Rational investment decisions and pipeline management
 • Stage gating criteria
• Discovery research to feed the early pipeline
 • Technology platforms and antigens
 • Host-directed therapies
 • Alternative immunization routes
• Preclinical models to prioritize candidates
 • Pertinent models to answer scientific questions (i.v. BCG)
 • Ultimate validation from a clinical efficacy signal
• Immune correlates and biomarkers to predict vaccine efficacy
 • Exploit the signal from BCG revaccination
 • Biobanks from clinical trials
 • Novel assays (microbial growth inhibition)
• Clinical trials to progress towards new efficacious TB vaccines
 • Experimental medicine (aerosol) and controlled human challenge model
 • Alternative clinical endpoints
Clinical efficacy trial endpoints

- Prevention of Infection (POI), Disease (POD), Recurrence/re-infection (POR)
Key areas of focus and opportunities

• Rational investment decisions and pipeline management
 • Stage gating criteria

• Discovery research to feed the early pipeline
 • Technology platforms and antigens
 • Host-directed therapies
 • Alternative immunization routes

• Preclinical models to prioritize candidates
 • Pertinent models to answer scientific questions (i.v. BCG)
 • Ultimate validation from a clinical efficacy signal

• Immune correlates and biomarkers to predict vaccine efficacy
 • Exploit the signal from BCG revaccination
 • Biobanks from clinical trials
 • Novel assays (microbial growth inhibition)

• Clinical trials to progress towards new efficacious vaccines
 • Experimental medicine (aerosol) and controlled human challenge model
 • Alternative clinical endpoints
 • Late stage trials
How to do TB vaccine efficacy trials

• Diagnostics and treatment insights
• Normal lab ranges in African infants
• Immunological mechanisms and correlates
Immune correlates of risk analysis – MVA85A efficacy trial

T-cell activation is an immune correlate of risk in BCG vaccinated infants

Helen A. Fletcher1,2, Margaret A. Snowden3, Bernard Landry3, Wasima Rida4, Iman Satti1, Stephanie A. Harris1, Magali Matsumiya1, Rachel Tanner1, Matthew K. O’Shea1, Veerabadran Dheenadhayalan3, Leah Bogardus3, Lisa Stockdale1,2, Leanne Marsay5, Agnieszka Chomka6, Rachel Harrington-Kandt1, Zita-Rose Manjaly-Thomas1, Vivek Naranbhai7, Elena Stylianou1, Fatoumatta Darboe8, Adam Penn-Nicholson8, Elisa Nemes6, Mark Hatherill8, Gregory Hussey8, Hassan Mahomed8, Michele Tameris8, J Bruce McClain3, Thomas G. Evans3, Willem A. Hanekom8, Thomas J. Scriba8 & Helen McShane1

Blood samples collected from healthy infants up to 3 years before they developed TB disease

Result significant if Conditional Logistic Regression P<0.05 and FDR<2
Shaded bar indicates medium third of immune response level

OR 1.828, p = 0.002
Antibodies correlate with reduced risk of TB disease

Estimated odds ratio 0.62, \(p = 0.019 \)

Are they directly involved in protection or correlating with another immune parameter?

Fletcher HA et al, Nature Communications, 2016
Priority areas and recommendations

• Maintain a healthy pipeline from discovery to late stage to launch and invest wisely

• Sustain discovery research
 • Novel antigens and technology platforms
 • Immune mechanisms of pathogenesis
 • Alternative delivery routes

• Continue to identify correlates of vaccine protection (and TB risk)
 • Novel in vitro assays
 • Relevant animal models
 • Controlled human challenge model
 • Learnings from late stage trials and cohort studies

• De-risk clinical development
 • Correlates of protection
 • Controlled human challenge model
 • Experimental medicine studies
 • Alternative clinical endpoints (infection, recurrence)

• Conduct late stage clinical trials
Acknowledgements and references

• Progress and challenges in TB vaccine development
 • https://f1000research.com/articles/7-199/v1

• Global report on tuberculosis vaccines 2018

• Invaluable suggestions, contributions (and slides) from colleagues at:
 • Aeras
 • NIAID
 • WHO
 • BMGF
 • U. Oxford
 • LSHTM
 • TBVI