Status of Vaccine Development for Shigella

Mark Riddle
Professor and Chair, Department of Preventive Medicine and Biostatistics

Uniformed Services University

burden of disease snapshot
PPC Development
Pipeline status
critical efforts, partnership and funding landscape
Burden of Disease Snapshot

Lucerne, Switzerland (2018)
MORTALITY

Ebola × 4
DALYS

ABX RESISTANCE

To develop a safe, effective, affordable vaccine to reduce diarrhea, dysentery and morbidity caused by Shigella in children under 5 years of age, in LMICs
Expected serotype immunity from O-antigen based vaccines

<table>
<thead>
<tr>
<th>S. sonnei and S. flexneri serotypes (% all Shigella case isolates)</th>
<th>1a (0.3)</th>
<th>1b (7.5)</th>
<th>2a (20.2)</th>
<th>2b (10.9)</th>
<th>3a (9.4)</th>
<th>3b (0.1)</th>
<th>4a (2.9)</th>
<th>4b (0)</th>
<th>5a (0)</th>
<th>5b (0.3)</th>
<th>6 (11.0)</th>
<th>7a (2.0)</th>
<th>7b (0)</th>
<th>X (1.0)</th>
<th>Y (0.4)</th>
<th>Ss (23.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. sonnei</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>S. flex 2a</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td></td>
<td>✅</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>S. flex 3a</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td></td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. flex 6</td>
<td></td>
</tr>
<tr>
<td>Quadri-valent</td>
<td>✅</td>
</tr>
</tbody>
</table>

A quadrivalent mixture would protect against 88% of all *Shigella* (theoretically)
Pipeline status overview

Phase 1

<table>
<thead>
<tr>
<th>Live</th>
<th>Killed</th>
<th>Subunit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD1208S (S. flex 2a) U Maryland/PATH</td>
<td>TSWC (S. flex 2a) WRAIR/NIH</td>
<td>Oag synthetic conjug. (S. flex 2a) Pasteur Institute</td>
<td>NIH vaccine never licensed despite efficacy in phase 3</td>
</tr>
<tr>
<td>WRSs2/3 (S. sonnei) WRAIR/NIH</td>
<td>Invaplex-Detox IM (S. flex 2a) WRAIR/PATH/DFID</td>
<td>InvaplexAR-intranasal (S. flex 2a) WRAIR</td>
<td>Development halted, novel O-ag truncate under develop.</td>
</tr>
</tbody>
</table>

Phase 2

| Oag Bioconjugate (S. flex 2a) Limmatech (GSK) | GMMA (S. sonnei) GVGH (GSK) | Oag-TT conjugate (S. sonnei) NIH |

Phase 3

<table>
<thead>
<tr>
<th>Licensed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomycin-dep LAV (historic/various) (Yugoslav Army/other)</td>
</tr>
</tbody>
</table>

Notes

- Historic LAVs no longer in use
- BMGF funded
- Wellcome funded
- US Gov Funded
- EU funded
- DFID, industry, Acad
From GMMA theory to GVGH examples

Simple to prepare but capable of sophisticated manipulation

GMMA
(una gemma: Italian for bud or jewel)

Remove, modify toxic components
- LPS

Delete antigens / genes
- Shigella virG

Modify composition
- Multivalent vaccine

Induce blebbing

Break links
GMMA manufacturing – Generic, simple and robust

Building on Shigella GMMA and a technology suited to sub-Saharan Africa

Genetic modifications
1. Increase GMMA production $\Delta tolR$
2. Decrease LPS innate immune stimulation $\Delta htrB$ or $\Delta msbB$
3. Other mutations virG nadA/B knock-in

Fermentation

Purification
- Micro-filtration Collect 0.22 μm permeate
- Ultra-filtration Collect 300 kD retentate

Formulation
Adsorption on Alhydrogel

Sterile filtration 0.22 μm

DS and DP characterization
- Generic panel of release tests
- CQA

References:
Building the *S. sonnei* GMMA vaccine experience

1790GAHB is safe and immunogenic in Shigella naïve and exposed adult populations

Status of 4-component GMMA Shigella vaccine

Key activities *S. sonnei* 1790GAHB and 4-component GMMA

2017

1790GAHB in sonnei CHIM

2018

Interim VE

4-component

GO

2019

APR CSR

2020

2021

2022

Immunogenicity & formulation development

Site & lab selection

Tox lot

GLP tox

3x GMP *S. flex* MCB & GMMA lots

Clinical GMP lot

CTA

4-component GMMA, 2 staged phase 1/2

Stage 1

EU adults

Stage 2

LMIC age descending & dose finding

APR CSR

LBMartin | GSK GMMA project |

9 May 2018 | WHO Shigella vaccine consultation | Geneva
Flexyn2a: bioconjugate vaccine that conjugates the O antigen of Shigella flexneri 2a (Sfl2a) to the Phase 1 trial: safe and immunogenic in US adults (Riddle '16)

Phase 2b trial (controlled human infection model): safe, immunogenic and efficacious against 'shigellosis' (Talaat '17)

Phase 2b trial design

VACCINATION

- Flexyn2a: n=34
- Placebo: n=33

CHALLENGE

- 1500 CFU S. flexneri 2a 2457T

Primary endpoint

- Severe Diarrhea
- Moderate diarrhea & fever or ≥ 1 moderate const/enteric symptom
- Dysentery

Flexyn2a Immunogenicity

Serum Sf2a-LPS IgG

- Injection
- Challenge

<table>
<thead>
<tr>
<th>2a-LPS serum IgG titer (log10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- Flexyn2a
- Placebo

Mean +/- 95% CI

*: p<0.05, t-test

Serum Sf2a-LPS IgA

- Injection
- Challenge

<table>
<thead>
<tr>
<th>2a-LPS serum IgA titer (log10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- Flexyn2a
- Placebo

Mean +/- 95% CI

*: p<0.05, t-test

Serum Bactericidal Activity (SBA)

- Injection
- Challenge

<table>
<thead>
<tr>
<th>SBA titer (log10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

*: p<0.05, t-test

≥4-fold rise from baseline

<table>
<thead>
<tr>
<th></th>
<th>Serum Sf2a-LPS IgG</th>
<th>Serum Sf2a-LPS IgA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexyn2a</td>
<td>26/34 (76.5%)</td>
<td>26/34 (76.5%)</td>
</tr>
<tr>
<td>Placebo</td>
<td>0/30 (0%)</td>
<td>1/30 (3.3%)</td>
</tr>
<tr>
<td>Flexyn2a</td>
<td>27/33 (81.1%)</td>
<td>26/33 (78.8%)</td>
</tr>
<tr>
<td>Placebo</td>
<td>1/30 (3.3%)</td>
<td>1/30 (3.3%)</td>
</tr>
</tbody>
</table>

Day 0 to Day 28
Day 0 to Day 55
Flexyn2a protects against severe shigellosis outcomes

<table>
<thead>
<tr>
<th>Attack Rate N(%)</th>
<th>Vaccine Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>Flexyn2a N=30</td>
<td>Placebo N=29</td>
</tr>
<tr>
<td>Shigella (primary endpoint)</td>
<td>13 (43.3)</td>
</tr>
</tbody>
</table>

Secondary Endpoints:

- More Severe Diarrhea: 2 (6.7) vs. 7 (24.1), *p*-value = 0.07
- Received Early Administration of Antibiotics: 9 (30.0) vs. 18 (62.1), *p*-value = 0.01
- Received IV Fluids: 7 (23.3) vs. 13 (44.8), *p*-value = 0.05

- More Severe Shigellosis* (post hoc analysis): 8 (27.6) vs. 16 (53.3), *p*-value = 0.015

*Difference between the shigellosis primary endpoint and more severe shigellosis analysis is the inclusion of severe symptoms.

Multivalent P2 Descending Age Study

Confidential 12
SF2a-TT15
A synthetic carbohydrate-based
Shigella flexneri 2a vaccine candidate

ClinicalTrials.gov Identifier: NCT02797236

Phase I trial
Randomized, single blind, placebo controlled, dose escalation study in healthy adults

Investigator: Jacob Atsmon - Tel Aviv Sourasky Medical Center

Sponsor: Institut Pasteur
(Clinical management: Cécile Artaud)

Primary outcome: safety

Secondary outcome: immunogenicity
Dani Cohen (TAU), Marie-Lise Gougeon (IP)

Laurence Mulard,
Head, Chemistry of Biomolecules Laboratory

Armelle Phalipon
Group Leader, Molecular Microbial Pathogenesis Unit
Study design

- Pre-screen included anti-SF2a IgG assessment – highest 20% excluded
- Single blinded with clinical and lab staff masked on study agents
- 46 males & 18 females, mean age: 22.7 (SD=5.9)

<table>
<thead>
<tr>
<th>Cohort 1</th>
<th>Cohort 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2μg/OS</td>
<td>10μg/OS</td>
</tr>
<tr>
<td>2μg/OS + alum</td>
<td>10μg/OS + alum</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>placebo</td>
<td>placebo</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- 3 IM injections on days 0, 28, 56
- Nine follow up visits for safety and immunogenicity, last visit 3 month after 3rd dose
Results

- SF2a-TT15 is safe and well tolerated.
- 1 immunization with 10 µg SF2a-TT15 (dose per synthetic OS) induces an impressive serum anti-SF2a LPS IgG response in 100% of the vaccinees (x 27 fold as compared to placebo baseline (similar results with the other immune parameters measured).
- SBA correlation with the level of serum IgG antibodies to SF2a LPS indicates functional capabilities of these antibodies.
- SF2a-TT15 also elicits a significant rise in the percent of specific B memory cells to SF2a LPS suggesting priming for a sustained immune response.
- At the lower dose, alum increases SF2a-TT15 immunogenicity.

Future plans:

<table>
<thead>
<tr>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12</td>
<td>07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12</td>
<td>07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12</td>
<td>07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12</td>
<td>07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12</td>
</tr>
</tbody>
</table>

SF2a-TT15 monovalent

Flex 2a CHIM

Flex 2a Descending Age Study
Shigella Invasin Complex (Invaplex) Vaccine

Invaplex is a unique subunit *Shigella* vaccine

- **Composition:** Serotype-specific LPS in a macromolecular complex with broadly conserved Ipa proteins.
- **Highly immunogenic:** Inducing immune responses directed to LPS and Ipa proteins, mimicking responses to natural infection.
- **Biologically active:** Induces endocytosis.
- **Safe:** Delivered to > 100 volunteers with no Significant Adverse Events.
- **Multivalent *Shigella* vaccine:** Multiple options for constructing tri- or quadrivalent serotype-specific vaccine.
- **Combination Vaccine Potential:** Can be administered with other enteric vaccines. Functions as an adjuvant for protein and DNA vaccines.
- **Gap Filling:** The Ipa protein components helps to “fill the gap” between conjugate (LPS-driven) and whole cell (live-attenuated or inactivated) vaccine approaches.
Shigella Invaplex Vaccines (AR = Artificially Recombined)

Phase 1/2b: tbd

MUCOSAL

- IpaB + IpaC + LPS → Invaplex

PARENTERAL

- IpaB + IpaC + Detoxified LPS → Invaplex

Phase 1 planned: Jan 2019 (DFID/US DoD Funded; PATH Sponsor)

- IpaB + IpaC + Detoxified LPS → Invaplex

Invaplex_{AR} and **Invaplex_{AR-DETOX}**
Shigella live-attenuated approaches

<table>
<thead>
<tr>
<th>Primary attenuation strategy</th>
<th>UMD-CVD</th>
<th>DoD-WRAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔguaBA - enzymes employed in the distal de novo purine biosynthesis pathway</td>
<td></td>
<td>ΔvirG-responsible for inter- and intra-cellular spread</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional attenuation deletions</th>
<th>UMD-CVD</th>
<th>DoD-WRAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δset (Shigella entertoxin 1), Δsen (shigella enterotoxin 2)</td>
<td></td>
<td>Δset + Δsen (2nd), ΔmsbB2 (3rd, reduces pyrogenicity by deleting the lipid A acyltransferase)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Most recent trial (year)</th>
<th>UMD-CVD</th>
<th>DoD-WRAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 with lyophilized 1208S (2013)</td>
<td></td>
<td>Phase 1 with WRSs2/3 (2017)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary results</th>
<th>UMD-CVD</th>
<th>DoD-WRAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, with 3 doses (0, 28, 56) at 10^8 CFU 42% serconversion</td>
<td></td>
<td>Safe at single dose with better immunogenicity for WRSs2>WRSs3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next steps</th>
<th>UMD-CVD</th>
<th>DoD-WRAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No current trials planned</td>
<td></td>
<td>Phase 2b with 2 doses of WRSs2 (NIAID/US-DoD)</td>
</tr>
</tbody>
</table>
Next Generation: Strain CVD 1208S-122

A prototype *Shigella* live vector expressing ETEC antigens

CVD 1208S::P_{mLpp}-CFA/I-LThA2B

- chromosomal integration of CFA/I and LThA2B expression, by mLpp promoter
- renamed as **CVD 1208S-122**

CVD’s Portfolio of *Shigella*-ETEC vaccine strains

<table>
<thead>
<tr>
<th>Attenuated live vector strain</th>
<th>serogroups and serotypes</th>
<th>ETEC Antigens</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD 1208S-122</td>
<td>S. flexneri 2a</td>
<td>CFA/I & LTA2B</td>
</tr>
<tr>
<td>CVD 1213S-210</td>
<td>S. flexneri 3a</td>
<td>CS1 & CS5</td>
</tr>
<tr>
<td>CVD 1215S-310</td>
<td>S. flexneri 6</td>
<td>CS4 & CS6</td>
</tr>
<tr>
<td>CVD 1233S-410</td>
<td>S. sonnei</td>
<td>CS2 & CS3</td>
</tr>
<tr>
<td>CVD 1254S</td>
<td>S. dysenteriae 1</td>
<td>Stx1B & CS17</td>
</tr>
</tbody>
</table>

Note: The trc promoter did not result in efficient expression of ETEC antigens
Truncated mutant: *Shigella* strains with shorter O-polysaccharide unit

*IcsP is masked by lipopolysaccharide (LPS) O-antigen on the wild type *Shigella* surface

Update since PDVAC 2017

- Truncated O side chains of LPS Increase exposure of conserved IcsP outer membrane protein on *Shigella* surface without affecting expression level
- In mice, immunization with mutant strains:
 - induced elevated IgA and IgG immune responses to whole cells and outer membrane proteins (PSSP 1 and Ipa’s)
 - Induction of heterologous protection noted in mouse lung model
- Heterologous protection will be investigated in the Sereny GP model
- Vaccine is envisioned to include at least 2 strains: Sf2a and *S. sonnei*
- RO1 pending with NIH for cGMP production of pilot lot of the truncated mutant to enable approach to move into Ph1/2b trials

Data Courtesy of Jae-Ouk Kim, IVI
<table>
<thead>
<tr>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

STRATEGY
- SME WS
- Funders Mtg
- Strategy endorsed

REGULATORY
- WHO PPC WS
- WHO PD & Policy Pathway
- WHO Engagement on ETEC & Shigella OPP1135836

ASSAYS & STDs
- ELISA WS
- IgG Thresholds OPP1189564 (Tel Aviv University)
- IgG stds flex 2a & S. Sonnei ELISA assay (NIBSC)

EPIDEMIOLOGY
- Burden WS

CHIM
- CHIM Clinical & Assays WS
- Endpt Consensus
- CHIM Endpt & Assays Papers submitted

Bioconjugate Vaccine (Limmatech)
- Multivalent P2 Descending Age Study

GMMA (GVGH) OPP1133860
- S. Sonnei CHIM
- Multivalent P2 Descending Age Study

Synthetic GP Vaccine (IP)
- Flex 2a CHIM
- Flex 2a Descending Age Study

Slide courtesy: Cal MacLennan, BMGF
Points for discussion

- Regulatory/LMIC/WHO consensus for accelerated development pathway?
- Stewardship of field site development in support of phase III planning
- LMIC/industry engagement on vaccine development, value and adoption
- Pipeline robustness, sustainment of enteral approaches/strategies
- What should be the role/priority for WHO/IVR going forward?

ACKNOWLEDGEMENTS

- Birgitte Giersing (WHO)
- A. Louis Bourgeois (PATH)
- Veronica Gambillara (LimmaTech/GSK)
- Armelle Phalapon (Institute Pasteur)
- Laura Martin (GSK/GVGH)
- Rob Kaminski (WRAIR)
- Malabi Venkatessan (WRAIR)
- Calman MacLennan (BMGF)
Shigella Vaccine Development: Critical Efforts, Partnership, and Funding Landscape

Key Aspects

- **Vaccine Pipeline Generator**
- **Assay, Tools, Early Clin. Development**
- **Regulatory Path / Pivotal Trial Execution**
- **Disease Burden / Health Need**
- **Market Development / Buyer Demand**

<table>
<thead>
<tr>
<th>Academia</th>
<th>Govt R&D</th>
<th>Industry</th>
<th>Regulatory Agencies</th>
<th>Philanthropic Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAV</td>
<td>LAV, synth conj, Invaplex</td>
<td>Bioconjugate, GMMA</td>
<td></td>
<td>Partner / Sponsor</td>
</tr>
<tr>
<td>Stand. ELISA, Phase 1/2b</td>
<td>Stand. ELISA, Phase 1/2b</td>
<td>Stand. ELISA, Phase 1/2b</td>
<td></td>
<td>Partner / Sponsor</td>
</tr>
<tr>
<td>Field site development</td>
<td>Field site development</td>
<td>Phase 3 trials</td>
<td></td>
<td>Partner / Sponsor</td>
</tr>
<tr>
<td>GEMS, BoD, Traveler Epi</td>
<td>Traveler Epi</td>
<td>Traveler Epi</td>
<td></td>
<td>GAVI</td>
</tr>
<tr>
<td>Country level assessments</td>
<td>Multi-country Network</td>
<td>Priority setting (WHO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAGE Recommend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Stand. ELISA, Phase 1/2b**
- **Field site development**
- **Phase 3 trials**
- **Key Partners**
- **Priority setting (WHO)**
- **SAGE Recommend**
- **GAVI**
Target Product Profile for Shigella Vaccines (in revision)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum</th>
<th>Optimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication*</td>
<td>Prevention of moderate to severe diarrhea due to Shigella in children less than two years of age</td>
<td>Prevention of moderate to severe diarrhea due to Shigella in children less than two years of age</td>
</tr>
<tr>
<td>Target Population*</td>
<td>Children up to two years of age</td>
<td>Children up to 5 years of age</td>
</tr>
<tr>
<td>Schedule and Route of Administration*</td>
<td>EPI schedule: 2 or 3 dose + booster IM route.</td>
<td>EPI schedule - 1 dose IM route.</td>
</tr>
<tr>
<td>Safety</td>
<td>Safety and reactogenicity profile should be clinically acceptable. Contraindications should be restricted to known hypersensitivity to any of the vaccine components</td>
<td>Safety and reactogenicity profile should be clinically acceptable. Contraindications should be restricted to known hypersensitivity to any of the vaccine components</td>
</tr>
<tr>
<td>Efficacy*</td>
<td>50% efficacy against moderate to severe diarrhea caused by Shigella strains in the vaccine</td>
<td>70% efficacy against moderate to severe diarrhea caused by all Shigella strains</td>
</tr>
<tr>
<td>Duration of Protection</td>
<td>2 years, w/ boosting possible to extend protection</td>
<td>To 5 years.</td>
</tr>
<tr>
<td>Cost</td>
<td>$1 - $3</td>
<td>< $1</td>
</tr>
<tr>
<td>Co-administration</td>
<td>With EPI vaccines without interference</td>
<td>With EPI vaccines without interference</td>
</tr>
<tr>
<td>Vaccine volume</td>
<td>0.5 ml/dose</td>
<td>0.5 ml/dose</td>
</tr>
<tr>
<td>Target Countries</td>
<td>GAVI-eligible and LMIC</td>
<td>GAVI-eligible and LMIC</td>
</tr>
<tr>
<td>Onset of immunity</td>
<td>2 weeks after 2 or 3 doses</td>
<td>2 weeks after 1 dose</td>
</tr>
<tr>
<td>Indirect protection</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Accelerated pathway enablers

ADVANCES IN THE FIELD

2 CHIMs

STANDARDIZED CONTROLLED HUMAN CHALLENGE MODELS

Shigella sonnei (53G)
 • 53G lyophilized (DoD)
Shigella flexneri (2457T)
Multiple Sites Developed
 • CVD, JHU, Univ of Cincinnati
Standardization efforts underway
 • Definitions
 • Study procedures

4 ELISAs

INTERNATIONAL STANDARDIZED ELISA - 4 TARGET SEROTYPES

• Establish ‘notional’ role of O-antigen IgG in protection
• Development of standard laboratory method/SOP
• Reference laboratory establishment
• Develop supply of sera for international standard

1 Pathway

ROAD-MAP FOR CLINICAL & REGULATORY PATHWAY

• WHO/GAVI prioritization, good will and open-mindedness
• Developer commitment
• Research community collaboration
• Funder backing