TB Vaccines: Pipeline Overview and Status of Late-stage Candidates

Ann M. Ginsberg, MD, PhD
PDVAC
27 June 2019 / Geneva
New TB vaccines: a critical, unmet global health need

- 10M new TB cases in 2017
- 1.6M deaths
- >1/4 of all AMR-related deaths

Deaths in 2017

Source: WHO Global TB Report 2018
Multiple Target Populations

- Infants/children
- Adolescents/Adults
- TB patients – during or post-cure
Multiple Therapeutic Indications

- Prevention of Infection – e.g., infant BCG replacement with improved BCG*
- Prevention of TB disease
 - BCG replacement
 - BCG boost (proximal)
 - BCG boost (distal)
- Prevention of recurrent TB
- TB treatment shortening +/- or increased cure rates (adjunct to treatment)

* Under discussion with regulators
Overview of Global Pipeline

Candidates in preclinical development are representative and include those in the IAVI and/or TBVI portfolios that have completed Gate 1 as published in Barker L, Hessel L, Walker B, *Tuberculosis*, 92S1 (2012) S25–S29.
Recent Progress in preclinical and translational science:

- Alternate Routes of Administration
 - iv BCG in mice\(^1\) and NHP\(^2\) – high levels of protection and evidence of role for trained innate immunity\(^3\)
 - Phase 1 studies of aerosol delivery in humans\(^4\)
- Novel vectors: e.g., CMV-TB (Picker/Aeras collaboration)\(^5\)
- New tools – e.g.:
 - Bar-coded Mtb strains\(^6\)
 - Controlled human infection models\(^7\)
 - Biorepository to support correlates discovery

Global Clinical Pipeline of TB Vaccine Candidates

Phase 1
- Ad5 Ag85A
 McMaster, CanSino
- ChAdOx185A/MVA85A
 (ID/IM/Aerosol)
 Univ of Oxford
- AEC/BC02
 Anhui Zhifei Longcom

Phase 2a
- RUTI
 Archivel Farma, S.L
- TB/FLU-04L
 RIBSP
- MTBVAC
 Biofabri, TBVI, Zaragoza, Aeras/IAVI

Phase 2b
- DAR-901
 Dartmouth, GHIT
- VPM 1002
 SIIL, Max Planck, VPM, TBVI
 (Ph2b/3)
- M72/AS01E
 GSK, Aeras/IAVI
- BCG Revaccination
- H56: IC31®
 SSI, Valneva, Aeras/IAVI
- ID93 + GLA-SE
 IDRI, Wellcome Trust

Phase 3
- Vaccae™
 Anhui Zhifei Longcom
- VPM 1002
 SIIL/VPM, Gol
- MIP
 Cadila, Gol

Legend
- Viral Vector
- Protein / Adjuvant
- Mycobacterial – Killed
- Mycobacterial – Live attenuated

Revised on October 20, 2018 – personal view!
2018 – a Year of Unprecedented Progress

- New use for 98 year old current vaccine - protect high risk, uninfected populations from Mtb infection with BCG revaccination
- Proof of concept that a subunit vaccine (2 Mtb antigens plus adjuvant) can protect against TB disease
- First demonstration that a vaccine can protect Mtb-infected adults from developing TB disease
- First opportunity to discover correlates of protection and increase understanding of protective human immune responses
Phase II Prevention of Infection Trial
H4:IC31 and BCG revaccination

Clinical Trial Sites:
SATVI and DTHF/Emavundleni
Overview – First TB Vaccine POI Trial

Objectives:
Phase 2 Proof of Concept Prevention of Infection study to evaluate safety, efficacy and immunogenicity

3 Study Arms:
- H4:IC31 (IM, 2 doses, 56 days apart)
- BCG revaccination (ID, 1 dose; SSI BCG)
- Placebo (saline; IM, 2 doses, 56 days apart)

Population:
- QFT*-negative adolescents (12–17y.o.)
- Western Cape, South Africa
- High risk of infection (~10% per year)

Design:
- Randomized (1:1:1)
- Placebo-controlled
- Partially blinded

Study Size:
N=990 (330/arm)

*QFT = QuantiFERON Gold In-Tube interferon gamma release assay
POI Trial Results and Conclusions

• Both H4:IC31® and BCG revaccination appeared safe and immunogenic

• Neither vaccine showed statistical significance in preventing initial infection (initial QFT conversion)

• BCG revaccination demonstrated statistically significant prevention of sustained infection (sustained QFT conversion): VE: 45.4%; p=0.01

• H4:IC31 did not demonstrate statistically significant prevention of sustained QFT conversion: VE: 30.5%; p=0.08

• Biobank created and analysis plan being developed for discovery of candidate correlates of risk and/or protection against sustained infection
First POI Trial: conclusions and next steps

BCG Revaccination
- Statistically significant protection against sustained infection
- Confirm then evaluate in Prevention of TB Disease trial
- Potential correlates of protection discovery

H4:IC31
- First signal of any protection against TB infection or disease in humans by a subunit vaccine
- Suggests benefit of studying other subunit vaccines
- Not being further developed

POI Trial Design
- Is feasible and may be useful tool for decision-making.
- Should be validated with a Prevention of Disease trial

Trial: NCT02075203
M72/AS01_E Phase IIb Prevention of Disease Trial

Results of the primary analysis
M72/AS01_E Candidate Vaccine

M72 antigens were initially identified in the context of controlled human infection.

Antigen – M72

- Recombinant protein comprising full length Mtb39A flanked by inverted halves of Mtb32A^{1,2}
- Mtb 32A and 39A are highly immunogenic²
 - Genes present in virulent and avirulent strains of Mtb complex and in BCG¹

Adjuvant – AS01_E

- Immunostimulants (MPL and QS21) in a liposome formulation³

2. AS01_E, Adjuvant System containing 3-O-desacyl-4'-monophosphoryl lipid A (MPL [25 μg], produced by GSK), *Quillaja saponaria* Molina, fraction 21 (QS-21 [25 μg], licensed by GSK from Antigenics LLC, a wholly owned subsidiary of Agenus Inc., a Delaware, USA corporation) and liposome.
M72/AS01E Candidate Vaccine
Goal: induce a robust Th1 CD4+ T cell response against Mtb antigens

Clinical safety and immunological profiles to date

- Generally well tolerated although higher reactogenicity observed in patients with active tuberculosis
- High seroconversion rate & long lasting humoral response
- Poly-functional CD4 Th1 cells (IFNγ TNFα IL-2+)
 - 3 years persistence*
- CD8 Th1 cells
- IL-17-expressing CD4 T cells
- T cell responses in lung

Phase IIb Study Design

- **Subjects**
 - HIV negative healthy adults (18 - 50 years)
 - Negative sputum by PCR (Xpert MTB/RIF)
 - Mtb-infected: positive by QuantiFERON

- **Design**
 - Double-blind, randomized (1:1)
 - M72/AS01E or Placebo
 - 2 doses 1 month apart

- **TB cases determination by**
 - Active follow-up every 2 months either by calls, home visits or SMS
 - TB symptoms and bacteriological confirmation (3 sputum samples)
 - By PCR and/or MGIT culture

- **3 years follow up**
 - Primary analysis at year 2
 - LSLV November 2018
Study Participants

Screened: n=8,336

- **Enrolled:** n=3,575
 - **Total Vaccinated:** n=3,573
 - ATP Efficacy: n=3,283
 - Not ATP Efficacy: n=290
 - **Not vaccinated:** n=2
- **Screening failure:** n=4,761

Trial sites:
- KEMRI
- CIDRZ
- Zambart
- SATVI
- TASK
- CIDRI
- Aurum Inst.
- Tembisa
- Klerksdorp
- BePart
- Setshaba
- PHRU

Figure adapted from Van Der Meeren et al, presented at IDWeek, October 2018, San Francisco CA, Abstract 70677

http://www.idweek.org

Van Der Meeren et al., NEJM, 2018
All Efficacy Endpoints: primary analysis

Vaccine efficacy against TB for each case definition

<table>
<thead>
<tr>
<th>Efficacy endpoints</th>
<th>TB diagnosis</th>
<th>HIV status</th>
<th>Sputum testing</th>
<th>Vaccine efficacy % (90% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Culture, PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing vs TB treatment start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case definition 1</td>
<td>Pulmonary TB Clinical suspicion</td>
<td>HIV–</td>
<td>Any positive</td>
<td>54</td>
<td>0.042</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td>Pulmonary TB Clinical suspicion</td>
<td>HIV–</td>
<td>Any 2 positive</td>
<td>70</td>
<td>0.017</td>
</tr>
<tr>
<td>Case definition 2</td>
<td>Pulmonary TB Clinical suspicion</td>
<td>HIV–</td>
<td>Any positive</td>
<td>58</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Any positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case definition 3</td>
<td>Pulmonary TB Clinical suspicion</td>
<td>HIV–</td>
<td>Any positive</td>
<td>35</td>
<td>0.174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Any positive</td>
<td>36</td>
<td>0.144</td>
</tr>
<tr>
<td>Case definition 4</td>
<td>Pulmonary TB Clinical suspicion</td>
<td>Any</td>
<td>Any positive</td>
<td>29</td>
<td>0.225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Any positive</td>
<td>28</td>
<td>0.267</td>
</tr>
<tr>
<td>Case definition 5</td>
<td>TB diagnosed and treated by clinician</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified case definition 5</td>
<td>TB diagnosed and treated by clinician</td>
<td>HIV–</td>
<td>Any</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All EfficacyEndpoints: primary analysis

Vaccine efficacy against TB for each case definition

Vaccine Efficacy for Case Definition 1

Kaplan-Meier (ATP cohort for efficacy)

Figure adapted from Van Der Meeren et al, presented at IDWeek, October 2018, San Francisco CA, Abstract 70677.

http://www.idweek.org

Van Der Meeren et al., NEJM, 2018
Conclusions and Next Steps

- M72/AS01E prevented TB disease in Mtb-infected adults
 - Efficacy of 54% [CI 90% 14-75%, p=0.04] - primary endpoint met
 - Secondary endpoint met (VE of 58%; p=0.05)
 - VE calculated for the other case definitions ranged from 28-70%
 - Acceptable safety profile

- More research is warranted
 - End of study analysis
 - Aeras (now IAVI) Biobank to enable correlates discovery

- Next steps for M72 development are under discussion with key stakeholders and funders
Proof of Concept Study Acknowledgments

Study participants and their communities

In the Study, the following individuals and their communities were involved:

- **AERAS**
 - Dereck Tait
 - Maria Lempicki
 - Maureen Lambrick
 - Kristin Croucher
 - Marisa Russell
 - Nathalie Cadieux
 - Kathryn Rutkowski
 - Cadwill Pillay
 - Gretta Blatner
 - Sharon Sutton
 - Ann Ginsberg
 - Anja Van der Westhuizen
 - Jennie Willson
 - Sebastian Gelderbloem
 - Tom Evans
 - Jacqui Shea

- **DMC Members**
 - IQVIA (ex-Quintiles)

Investigators and their teams

- Mark Hatherill
- Robert J. Wilkinson
- Monde Muyoyeta
- Nduba Videleis
- Elana Van Brakel
- Andreas Diacon
- Mookho Malahleha
- Elizabeth Hellström
- Neil Martinson
- German Henostroza
- Helen Ayles
- Friedrich Thienemann
- Michele Tameris
- Thomas Scriba
- James C. Innes

AERAS*

- Jacqueline Akite
- Aisha Khatoon
- François Roman
- Paul Gillard
- Christina Caporaso
- Evi De Ruymaeker
- Emelia Ferreira
- Florence Richard
- Anne-Sophie Perreaux
- Tina Singh
- Paola Pirrotta
- Pramod Dhoke
- Sagar Salvi
- Naresh Patil
- Neela Kumar
- Roland Vaudry
- Philippe Moris
- Gerald Voss
- Marie-Ange Demoitié

GSK

- Anne Bollaerts
- Muriel Debois
- Helen Jacob
- Sophie Caterina
- Mohamed Amakrane
- Lieven Declerck
- Marc Lievens
- Hildegarde Lemaire
- Stéphanie Ravault
- Bruno Salaun
- Nathalie Baudson
- Thierry Pascal
- Erik Jongert
- Olivier Van Der Meeren
- Denis Sohy
- Stéphanie Delval
- Ioana Cristina Ilea
- William Zonta

Funders:

Aeras/IAVI (BMGF, DFID, DGIS, AusAID); GSK

* *Aeras TB vaccine clinical program was recently transferred to IAVI*
A new model with novel partnerships and networks required to achieve ‘end-to-end’ program impact.
A coalition of critical upstream and downstream partners will enable program funding, accelerated M72 development and rapid access.

Identify Medical Needs & Product Requirements
- Unmet Medical Need
- Target Product Profile (TPP)

Research & Development
- Discovery, Product Optimization, Preclinical Development
- Clinical Development Regulatory Strategy

Licensure

Enabling Access & Supply
- Low Cost Manufacturing, Packaging, Supply, Delivery

Financing, Procurement
- Market Potential
- Demand Forecasts
- Access Agreements
- Public Health Value Proposition

Launching & Delivery, Demand Generation
- Cost-Effectiveness
- Population Impact
- Epidemiology
- Access Roadmap

Country Decisions
- TPP
- WHO SAGE
- WHO Prequalific.
- Acceptability assessments

Potential Program Partners/Funders:
- Bill & Melinda Gates Foundation
- Unitaid
- WHO
- IDCT
- The World Bank
- The Global Fund

TPP

M72/AS01 Phase 2b development partner
IAVI gratefully acknowledges the generous support provided by the following major donors

- USAID FROM THE AMERICAN PEOPLE
- PEPFAR U.S. President’s Emergency Plan for AIDS Relief
- BILL & MELINDA GATES FOUNDATION
- THE WORLD BANK
- UKaid from the British people
- CEPI New vaccines for a safer world
- JAPAN
- Ministry of Foreign Affairs of the Netherlands
- Ministry of Foreign Affairs of Denmark
- MINISTRY OF FOREIGN AFFAIRS OF DENMARK
- Ministry of Foreign Affairs of The Netherlands
- Ministry of Science & Technology, Government of India
- Ministry of Foreign Affairs of Denmark
- Ministry of Foreign Affairs of The Netherlands
- Ministry of Science & Technology, Government of India
- National Institute of Allergy and Infectious Diseases
- Norwegian Ministry of Foreign Affairs
- U.K. Department for International Development
- The U.S. President’s Emergency Plan for AIDS Relief through the U.S. Agency for International Development
- The World Bank
- As of May 2018

And many other generous individuals and partners around the world
Thank you
ANNEX

<table>
<thead>
<tr>
<th>Duration (years)</th>
<th>VE(%)</th>
<th>% decrease in cases</th>
<th>CE vaccine price (USD)</th>
<th>% decrease in cases</th>
<th>CE vaccine price (USD)</th>
<th>% decrease in cases</th>
<th>CE vaccine price (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>40</td>
<td>24</td>
<td>1.30</td>
<td>24</td>
<td>3.45</td>
<td>17.5</td>
<td>6.97</td>
</tr>
<tr>
<td>60</td>
<td>33</td>
<td>34</td>
<td>2.18</td>
<td>5.36</td>
<td>25</td>
<td>10.90</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>40</td>
<td>2.73</td>
<td>6.44</td>
<td>30</td>
<td>13.18</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>52</td>
<td>53</td>
<td>3.98</td>
<td>9.04</td>
<td>42</td>
<td>19.95</td>
<td></td>
</tr>
</tbody>
</table>