Heterologous Prime-Boost & Adjuvanted Env Protein HIV Vaccine Approaches

Susan W. Barnett
WHO-NIAID Meeting on HIV, Malaria, and TB Vaccines
April 17-18, 2012
Rockville, MD
Background & vision of HIV vaccine

- Phase III Thai trial (RV144) was “tipping point” for HIV vaccines (ALVAC prime-Env protein boost)
- Primary goal of an effective HIV vaccine is to prevent infection/virus dissemination
- Vaccine candidates might include:
 - Vector/nucleic acid prime plus adjuvanted protein boost
 - Proteins with safe & potent adjuvants
 - Combined prevention strategy using anti-retrovirals, microbicides, and vaccine interventions
Clinical efficacy of RV144 HIV vaccine trial waned over time

- Env Ab-mediated protection
- V2 Abs associated with protection
- Abs waned over time

Vaccine Efficacy 60% at 6-12 months

B. Haynes, et al., NEJM, 2012
Key components of effective vaccines

- Nucleic Acid & Viral Vectors
- Delivery System
- Immune Potentiator
- Antigen
- Long-lived B & T cell memory
- MF59 or Alum
- HIV Env

e.g., TLR agonist
MF59®: a safe & potent adjuvant

An oil-in-water emulsion used in licensed product (Fluad)

Composition:
- 0.5% Polysorbate 80 water-soluble surfactant
- 0.5% Sorbitan Triolate oil-soluble surfactant
- 4.3% Squalene oil
- Water for injection
- 10 mM Na-citrate buffer

Density: 0.9963 g/ml
Size: 160nm

- MF59 increases antigen uptake and activates local immune cells
- Dose sparing, improved vaccine immunogenicity & efficacy
- 150 million doses of MF59® vaccines distributed with no safety signals
Enhancing, dose-sparing effects of MF59 on pandemic flu vaccine (H5N1) in humans

- Higher frequencies of H5 CD4 T cells
- Higher frequencies of H5N1 memory B cells
- Protective antibody titers after two doses, broadly neutralizing drifted H5 clades

Galli et al. PNAS 2009
MF59® adjuvanted influenza vaccine, Fluad, was 75% more efficacious than non-adjuvanted vaccines in young children.

* Statistically significant; ‡ Post-hoc analysis

1 Vesikari T et al., NEJM, 2011.
Modulation and enhancement of MF59 potency

- Antibodies
 - MF59 alone
 - MF59 + TLR agonist

- Th1 T cells
 - IFNγ positive CD4 T cells (per 10^5)

Geometric Mean ELISA Titer (IgG)
MF59 + CpG enhances neutralizing antibody responses against SF162 in rabbits

B. Burke, et al., Virology, 2009
Evaluation in NHP of alum and MF59-based formulations using TLR4 and TLR7 SMIPs

Groups:
1. ENV
2. ENV + Alum
3. ENV + Alum + TLR4
4. ENV + Alum + TLR7
5. ENV + MF59
6. ENV + ANE/TLR4
7. ENV + ANE/TLR7
8. ENV + pIC:LC
9. ENV + ISCOM

From Bob Seder et al. unpub.
Preclinical POC for prime-boost & adjuvanted Env
Protection by active immunization in SHIV macaque model

- Protection in macaques against mucosal or systemic virus challenge using:
 - DNA prime-Env protein boost (Cherpelis, 2001; Buckner, 2004)
 - Alphavirus prime-Env protein boost (Xu, 2006; Barnett, 2010)
 - Adenovirus prime-Env protein boost (Lubeck, 1997; Bogers, 2008)
 - Vaccinia prime-Env protein boost (Hu, 1992; Hu, in prep)
 - Adjuvanted Env protein alone (Barnett, 2008; Verschoor, 1999)

- Antibody-mediated protection observed
 - High titer & high avidity binding Abs
 - Virus neutralizing Abs
 - ADCC

- CD4+ T helper responses
Summary

- Active immunization with HIV Env vaccines conferred antibody-mediated protection in SHIV-macaque model
 - Protection vs. homologous or closely related heterologous challenges
 - High dose intravaginal, intrarectal, and intravenous challenges
 - Gag-specific CTL not required for protection in these studies
 - Antibody-mediated protection (high titer, high avidity, neutralizing, ADCC)
 - Proof-of-concept established for Env-based vaccines with or without V2 loops

- SIV-based vaccine – low dose repeated mucosal challenge studies in progress for several of these approaches to confirm results

- These results are consistent with the observed efficacy of the prime-boost approach employed in RV144
Phase 1 trial of DNA/PLG prime Env protein boost

HVTN049 clinical trial design (SF162 gp140ΔV1 Env)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number Active (Control)</th>
<th>Dose DNA / gp140 µg (per plasmid)</th>
<th>Part A: Dose Escalation</th>
<th>Part B: Explore Immunogenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Month</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T1</td>
<td>10 (2)</td>
<td>250 / 100</td>
<td>DNA</td>
<td>DNA</td>
</tr>
<tr>
<td>T2</td>
<td>10 (2)</td>
<td>500 / 100</td>
<td>DNA</td>
<td>DNA</td>
</tr>
<tr>
<td>T3</td>
<td>10 (2)</td>
<td>1000 / 100</td>
<td>DNA</td>
<td>DNA</td>
</tr>
<tr>
<td>T4</td>
<td>20 (4)</td>
<td>1000 / 100</td>
<td>DNA</td>
<td>DNA</td>
</tr>
<tr>
<td>T5</td>
<td>30 (6)</td>
<td>None / 100</td>
<td>gp140</td>
<td>gp140</td>
</tr>
<tr>
<td>Total</td>
<td>80 (16)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neutralizing Ab responses in HVTN 049 Phase 1

Elicitation of high titer Tier 1 neutralizing Abs

From David Montefiori.
HVTN 049 ICS magnitude of positive responses to Env or Gag (Pool 1)

CD4+ T Cells

- Positive response
- Negative response

<table>
<thead>
<tr>
<th></th>
<th>2 weeks post VAC5</th>
<th>2 weeks post VAC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>1/13</td>
<td>0/29</td>
</tr>
<tr>
<td>Any Pool 1</td>
<td>6/9</td>
<td>0/9</td>
</tr>
<tr>
<td>gp140</td>
<td>8/9</td>
<td>0/9</td>
</tr>
<tr>
<td>250 mcg DNA/PLG + gp140</td>
<td>20/26</td>
<td>0/9</td>
</tr>
<tr>
<td>500 mcg DNA/PLG + gp140</td>
<td>17/29</td>
<td>0/9</td>
</tr>
<tr>
<td>1000 mcg DNA/PLG + gp140</td>
<td>0/9</td>
<td>1/26</td>
</tr>
<tr>
<td>gp140</td>
<td>20/26</td>
<td>1/26</td>
</tr>
</tbody>
</table>

HVTN 049 ICS magnitude of positive responses to Env or Gag (Pool 1)

- Placebo
- Any Pool 1
- gp140
- 250 mcg DNA/PLG + gp140
- 500 mcg DNA/PLG + gp140
- 1000 mcg DNA/PLG + gp140
- 2 weeks post VAC5
- 2 weeks post VAC3
- Env
- Gag
HVTN 049: DNA priming of gp140 protein* does not influence the proportion of polyfunctional CD4+ T cells

*with MF59 adjuvant
HVTN 049: DNA priming of gp140 protein* shifts CD4\(^+\) T-cell response toward Th\(_1\)

*with MF59 adjuvant
Clinical findings from HVTN049 Phase 1
SF162 gp140 protein in MF59 adjuvant with or without DNA priming

• All vaccinees (Env alone or DNA prime-Env)
 - High frequency of Env-specific CD4+ T cells
 - High titer Tier 1, low Tier 1b & Tier 2 neutralizing Abs (D. Montefiori)
 - High titer & cross-subtype binding Abs, IgA and IgGs (G. Tomaras)

• DNA-prime-Env vaccinees
 - TH1 phenotype of multifunctional Env-specific CD4+ T cells
 - High frequency of Env-specific memory B cells (N. Frahm)
 - Higher titers of neutralizing Abs & ADCC (G. Ferrari)
Lessons learned

- **Regimen**
 - DNA or vector prime plus adjuvanted Env protein boosts provide vaccine protection against high dose SHIV challenge in NHP
 - Adjuvanted Env protein also provided protection
 - Env protein boosts provide the highest Ab titers and greatest protection
 - Priming vaccines and adjuvants can augment Ab responses and push CD4 T cell responses toward a polyfunctional TH1 response that may be desirable

- **Antigens**
 - Both V2 deleted and native forms of Env gp140 provided protection

- Vaccine antigens & regimens are yet be found to optimally present virus neutralizing epitopes to the human immune system
 - The role of other antibody effector functions in vaccine protection should also be investigated
Acknowledgements

Collaborators

Univ. of Washington
Patricia Polacino
Shiu-Lok HU

Seattle Biomedical Research Institute
Rong Xu
Nina Derby
Leo Stamatatos

NCI
Thorston Demberg
Seraphin Kuate
Marjorie Robert-Guroff

ABL
Ranajit Pal
Sharon Orndorff

Emory University
Paul Spearman

Univ. of California
Tracy Rourke
Kirsten Boste
Chris Miller

Biomedical Primate Research Centre
Willy Bogers
Ernst Verschoor
Gerrit Koopman
Petra Mooj
David Davis

Cambridge University
Rachel Pei-Jen Lai
Simon Frost
David Sealey
Mariana Varela
Jonathan Heeney

Duke University
Bart Haynes
Anthony Geonnotti
David Montefiori
Guido Ferrari
Georgia Tomaras

FHCRC
Nicole Frahm
Julie McElrath

VRC
Robert Seder

NIH Grants and Contracts
(RR11069, AI51596, AI48225-03,
N01-AI-05396,
HHSN266200500007C,SVEU,
HVTN)
Acknowledgements

Novartis

Microbial Molecular Biology
Avishek Nandi
Clayton Beard
Peter Mason

Immunology
Kaustuv Banerjee
Gib Otten
Nicholas Valiante

Protein Biochemistry
Antu Dey
Carlo Zambonelli
Samuel Stephenson
Karin Hartog
Harold Legg
Susan Hilt
Yide Sun
Karen Matsuoka
Mark Wininger
Frank Situ
Jimna Cisto
Priyanka Ramesh
Pampi Sarkar
Klara Sirokman
DeeAnn Martinez-Guzman
Andrea Carfi

Formulations
Yen Cu
Luis Brito
Andrew Geall
Manmohan Singh
Derek O'Hagan

Quality & Toxicology
Kay Sanders
Claudia Vitali
Manfred Boese
Maryam Rafie-Kolpim
Deborah Novicki

Clinical Dev.
Penny Heaton

Finance
Mala Briceno
Tammy Tong
Tara Wells

Contracts & Project Management
Brian Burke
Laurie Peltier
Jonathan Sahady
Randy Deck

HIV mini-GPT
Emanuela Palla
Susan Barnett
Niranjan Kanesa-Thasan
Fred Porter
Mary Wu

Vaccine Research Leadership
Jeffrey Ulmer
Christian Mandl
Rino Rappuoli

BD&L, Legal, & IP
Maureen Rogers
Helen Lee
Regina Bautista
Sally Jennings
Marcus Dawson
Robert Gorman

Serology
James Monroe
Giuseppe Palladino

TD/TechOps
Jurgen Mullberg
Kunal Aggarwal
Luis Maranga
Paula Keith

Vaccine Research Leadership
Jeffrey Ulmer
Christian Mandl
Rino Rappuoli