Antigenic targets for broadly protective and universal influenza virus vaccines

Florian Krammer

The first WHO integrated meeting on development and clinical trials of Influenza vaccines that induce broadly protective and long-lasting immune responses

24th January 2013
Target overview

- Internal proteins
- M2e
- Neuraminidase (NA)
- Stalk domain of the hemagglutinin (HA)

adapted from Krammer and Grabherr, Trends Mol Med 2010
Internal proteins

- Nucleoprotein (NP), M1 and polymerase subunits
 - Conserved (e.g. about 90% amino acid identity for NP between human H1 and H3 isolates)
 - Strong T-cell epitopes
 - Anti-NP antibody responses involved in protection to a lesser degree
 (LaMere et al., J Virol and J Immunol, 2011)
 - Not easily accessible for antibodies
- Various experimental T-cell based vaccines with NP and M1 in animal models
- MVA vectored vaccines
 - NP+M1 expressing MVA vaccine was able to induce strong CD8+ and CD4+ T-cell responses
 (Lillie et al., Clin Infect Dis, 2012)
- Peptide vaccines
 - Multimeric-001 (BiondVax) contains NP and M1 epitopes
 (Atsmon et al., 2012, J Clin Immunol)
M2e

- 23 N-terminal amino acids which form the ectodomain of the tetrameric M2 ion channel
- Displayed on the cell surface, low copy number on the virus
- Conserved (~80% amino acid identity)
- Early development of particle-based M2e vaccines (Neirynck et al., Nat Med, 1999 and others)
- Vaccination induces infection-permissive (not sterilizing) immunity
 - morbidity, virus replication
- Mechanism
 - Mainly antibody dependent cell-mediated cytotoxicity (El Bakkouri et al., J Immunol, 2011 and others)
- Discussed as “additive” to regular influenza virus vaccine
Neuraminidase (NA)

- Tetrameric virus surface glycoprotein
- Functions
 - Sialidase activity permits transport of the virus through mucin
 - Sialidase activity essential for release of budding virus
- Conservation:
 - Slower drift rate than HA (Sandbulte et al., PNAS, 2011; Kilbourne et al., PNAS 1990)
 - Stalk region highly variable
 - Group 1 (N1, N4, N5, N8) and group 2 NAs (N2, N3, N6, N7, N9)
 - Very low amino acid identities between groups (~40%) but some conserved patches
 - About 80-90% amino acid identity between avian and human N1s
NA vaccines

• NA content not standardized in commercial vaccines
• Immunity against NA is thought to be infection-permissive (not sterilizing)
• N1 VLP vaccines induce cross-protection against H5N1 and H1N1 (Easterbrook et al., Virology, 2012; Wu et al., Plos One, 2012; Quan et al., Virology, 2012)
 – some morbidity, no mortality
• Cross-reactive anti-NA antibody levels correlate with protection (Chen et al., Vaccine, 2012; Rockman et al., JVI, 2013)
• Mechanism of protection
 – Inhibition of NA activity
 – ADCC could play a role as well
Hemagglutinin (HA)

- Homotrimeric major surface glycoprotein and major antigen
- Mediates binding to cell receptors and fusion of viral and endosomal membranes
- Vaccines induce strain specific, hemagglutination inhibiting (HI) antibodies against the immunodominant globular head domain
 - HI active antibodies correlate with protection
 - Sterilizing/neutralizing immunity
Broadly neutralizing antibodies directed against the conserved stalk domain have been isolated recently (Throsby et al., Plos One, 2009; Wang et al., Plos Path, 2010; Ekiert et al., 2009 and 2011, Science; Sui et al., Nat Struct Mol Biol, 2009; Corti et al., Science, 2011; Tan et al., J Virol, 2011; Dreyfus et al., Science, 2012 and others)

- Neutralize (with exceptions) either group 1 or group 2 HAs
 - in vitro
 - in passive transfer studies in animals (ferrets, mice)
- Mostly conformational epitopes
- HI negative!!!
- Rare and not induced/boosted upon regular seasonal vaccination
HA subtypes are divided into two groups:

GROUP 1
- H1
- H2
- H5
- H6
- H8
- H12
- H9

GROUP 2
- H7
- H15
- H10
- H14
- H3

Shaw and Palese, 2011, Field’s Virology
Virus neutralization by head- and stalk-reactive antibodies

Head-reactive antibodies:
- HI active
- inhibit binding

Stalk reactive antibodies:
- inhibit fusion
- inhibit egress
- inhibit maturation
- ADCC

adapted from www.flutrackers.com /Cox&Kawaoka 1997
HA stalk vaccines

- Vaccines based on the long-alpha helix (LAH) and on headless HA (stalk domain only) have been reported (Wang et al., PNAS, 2010; Steel et al., mBio, 2010; Bommakanti et al., PNAS, 2010)
 - protection from mortality
 - problems with conformational epitopes/folding of the stalk domain
- Anti-stalk titer (ELISA) correlates with in vitro neutralization
- Induced by natural infection when divergent globular heads are introduced into the human population e.g. during the 2009 H1N1 pandemic (Pica et al., PNAS, 2012; Miller et al., J Infect Dis, 2012; Krammer et al., J Virol, 2012 etc)
Induction of stalk-reactive antibodies during the 2009 H1N1 pandemic

adapted from Matt Miller, Icahn School of Medicine at Mount Sinai
Chimeric hemagglutinin

Globular head domain

Conserved stalk domain

chimeric H6/1

Hai et al., 2012, JVI
Chimeric HA constructs as universal influenza virus vaccines

- cH9/1 DNA or virus vector
- cH6/1 protein
- cH5/1 protein (replaced by wild type H1 protein for H5N1 challenge)
- PR8 H1N1 FM1 H1N1 pH1N1 or H5N1 challenge
pH1N1 challenge

H5N1 challenge

% weight loss

% survival

days post challenge

Naïve
Positive control
empty VV + BSA + BSA
VV ch9/1 + ch6/1 + ch5/1 (or PR8)
VV ch9/1 + BSA + BSA

***, p = 0.0002

***, p = 0.0001
Universal influenza virus vaccine based on chimeric HAs:

• **Induces neutralizing anti-stalk antibodies**
 – Serum protects in passive transfer experiments
 – CD8+ T-cell depletion does not affect protection
 – Antibodies neutralize *in vitro*
 – Correlation between ELISA reactivity and neutralizing activity

• **Induces heterosubtypic immunity**
 – Works for group 1 as well as group 2 HAs

• **Trivalent universal vaccine based on a group 1, group 2 and influenza B component**
Acknowledgements

- Peter Palese
- Irina Margine
- Natalie Pica
- Rong Hai
- Nick Heaton
- Adolfo García-Sastre
- Randy A. Albrecht

Austrian Science Fund