Guus Rimmelzwaan
Erasmus Medical Center
Department of Viroscience
Rotterdam
The Netherlands

Broadly protective and universal influenza vaccines
Immune responses and correlates of protection

1st WHO integrated Meeting on development and clinical trials of Influenza vaccines that induce broadly protective and long-lasting immune responses.
Hong Kong, January 24-16, 2013
Heterosubtypic immunity

- Protective immunity against infection with an influenza A virus of a subtype other than that of the strain that elicited the immune response
 - Demonstrated in many different animals since 1965

- Unraveling the correlates of protection of Het-I (n.b. other than HI antibodies) may aid the development of universal influenza vaccines
 - Mimic infection-induced immunity as closely as possible
Induction of heterosubtypic immunity to influenza H5N1 -by infection with A/H3N2, not RSV-

Primary infection

% Body weight

- None (PBS)
- RSV
- A/H3N2 influenza

Proportion survival

A/Hong Kong/2/68 (H3N2)
A/Indonesia/5/05 (H5N1)

Heterosubtypic immunity in ferrets
A/Brisbane/10/07 (H3N2) – A/Indonesia/5/05 (H5N1)

Bodewes et al., 2011, J. Virol. 85(6):2695-2702
Basis for universal influenza vaccines
- Conserved proteins or regions thereof -

Viral targets for cross-reactive antibodies
- M2 protein
- Stalk region of HA
- NA
- NP

Viral targets for cross-reactive T cell responses
- All structural proteins in particular
 - NP
 - M1
- The non-structural proteins
 - NS1/NS2
 - PB1-F2, PA-X
- Polymerase proteins
 - PB1/PB2/PA
M2 has a conserved ectodomain: M2e

Courtesy of Prof. X. Saelens, Ghent University, Belgium
M2e fused to different carriers affords protection against influenza A

Protective effect has been demonstrated in animal models

- After hyper-immunization or
- Passive administration of M2-specific (monoclonal) antibodies
 - Probably mediated by antibody dependent cytotoxicity
 - NK cells
 - Complement system

<table>
<thead>
<tr>
<th>M2 antigen</th>
<th>Carrier</th>
<th>Type of fusion</th>
<th>Animal model</th>
<th>Virus</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>hM2</td>
<td></td>
<td>Genetic</td>
<td>Mouse</td>
<td>H2N2, H3N2</td>
<td>[46]</td>
</tr>
<tr>
<td>hM2e</td>
<td>HBC</td>
<td>Genetic</td>
<td>Mouse</td>
<td>H1N1, H3N2</td>
<td>[47]</td>
</tr>
<tr>
<td>hM2 deletion constructs</td>
<td>-/GST</td>
<td>Genetic</td>
<td>Mouse</td>
<td>H1N1, H2N2, H3N2</td>
<td>[53]</td>
</tr>
<tr>
<td>hM2e</td>
<td>HBC, NP</td>
<td>Genetic</td>
<td>Pig</td>
<td>H1N1</td>
<td>[60]</td>
</tr>
<tr>
<td>hM2e</td>
<td>HBC</td>
<td>Genetic, chemical</td>
<td>Mouse</td>
<td>H1N1</td>
<td>[61]</td>
</tr>
<tr>
<td>hM2e</td>
<td>BSA</td>
<td>Chemical</td>
<td>H3N2 (in vitro)</td>
<td>H1N1</td>
<td>[36]</td>
</tr>
<tr>
<td>hM2e</td>
<td>Multiantigen peptide</td>
<td>Chemical</td>
<td>Mouse</td>
<td>H3N2</td>
<td>[37]</td>
</tr>
<tr>
<td>hM2e</td>
<td>GST</td>
<td>Genetic</td>
<td>Mouse, ferret, rhesus monkey</td>
<td>H1N1, H3N1, H1N1, none</td>
<td>[57]</td>
</tr>
<tr>
<td>hM2e</td>
<td>KLH, OMPC</td>
<td>Chemical</td>
<td>Mouse</td>
<td>H1N1, H5N1, H6N2, H9N2</td>
<td>[56]</td>
</tr>
<tr>
<td>hM2e, avM2e, M2-DNA vaccine, M2-adenovirus</td>
<td>Hydrophobic domain</td>
<td>Genetic</td>
<td>Mouse</td>
<td>H1N1, H5N1</td>
<td>[58]</td>
</tr>
</tbody>
</table>

Table 1. Overview of published studies using M2 or M2e vaccine antigens.

Courtesy of Prof. X. Saelens, Ghent University, Belgium
Immune correlates of M2e vaccine induced protection

• Direct restriction of virus replication (Zebedee and Lamb, 1988; Hughey et al., 1995; Gabbard et al., 2009; Wang et al., 2009)

• NK cell-dependent (Jegerlehner et al., 2004)

• Not NK/NKT cell-dependent (Thompkins et al., 2007, Wang et al., 2008)

• Complement-dependent (Wang et al., 2008 but not Jegerlehner et al., 2004)

• Contribution of M2e-specific CD4⁺ T cells (Eliasson, El Bakkouri et al., 2008)

• DCs and macrophages involved (Song et al., 2011)

• FcReceptors and alveolar macrophages involved (El Bakkouri et al., 2011)

• Correlation with M2-levels in virion (Kim et al., 2012)?

Courtesy of Prof. X. Saelens, Ghent University, Belgium
FcReceptors and IgG subclasses in mice

Bruhns, Blood, 2012
Fcγ Receptors I and -III are important for protection by anti-M2e IgG

![Survival after X47 challenge graph]

* p < 0.01
** p < 0.001

Alveolar macrophages contribute to protection by anti-M2e IgG

Survival after X47 challenge

Protection is restored in Fcγ Receptors-I and -III ko mice by alveolar macrophages of wt mice

n = 6/group
Conclusions mode of action of M2e-specific antibodies

• Infected cells are primary target
• ADCC by NK and possibly neutrophils dependent on FcReceptors
• ADPC by alveolar and possibly exudate macrophages of opsonized cells

• Challenges:
 • Confirm FcReceptor contributions in human
 • Develop robust in vitro assay mimicking this mechanism for anti-M2e IgG
Correlates of protection:
- Antibodies other than HI antibodies -

NP specific antibodies

Evidence in mouse models
- Rangel-Moreno et al., J. Immunol 2007
- Carragher et al., J. Immunol. 2008
- LaMere et al., J. Immunol. 2011

- **Mechanism?**
- **Non-VN antibodies promote rapid expansion of X-reactive memory T cells**
 - FcRs
 - CD8+ T cells
 - Formation of NP-immune complexes?
Correlates of protection:
- Antibodies other than HI antibodies -

HA-stem specific antibodies
- Relatively conserved
- Protective effect demonstrated
 - after hyperimmunization or passive administration

Bommakanti et al., 2010, PNAS 107(31):13701-13706
Wei et al., 2010, Science 329:1060-1064
Kashyap et al., 2010, PLoS Pathogens 6(7):e1000990
Wang et al., 2010, PNAS 107(44):18979-18984
Wang et al., 2010, PLoS Pathogens 6(2):e1000796
Steel et al., 2010, mBio 1(1):e00018-10
Sui et al., 2009, Nat Struct Mol Biol 16(3):265-273
Kashyap et al., 2008, PNAS 105(16):5985-5991
Ekiert et al., 2009, Science 324:246-251
Corti et al., 2010, J Clin Invest. 120(5):1663-1673
Ekiert et al., 2011, Science 333:843-850
Corti et al., 2011, Science 333:850-856
Non-HI/non-VN antibodies to HA

Cross-Reactive Influenza-Specific Antibody-Dependent Cellular Cytotoxicity Antibodies in the Absence of Neutralizing Antibodies

Sinthujan Jegaskanda,* Emma R. Job,* Marit Kramski,* Karen Laurie,† Gamze Isitman,* Robert de Rose,* Wendy R. Winnall,* Ivan Stratov,* Andrew G. Brooks,* Patrick C. Reading,* and Stephen J. Kent*
Correlates of protection:
- Antibodies other than HI antibodies -

- **NA specific antibodies**
 - Also subtype specific
 - less likely to contribute to heterosubtypic immunity
 - Protective effect demonstrated in vitro and mouse models predominantly

- Kilbourne and Schulman, 1965
- Kilbourne et al., 1968
- Schulman et al., 1968
- Couch et al., 1974
- Beutner et al., 1979
- Johansson et al., 1989

- Johansson et al., 1993
- Johansson et al., 1993
- Johansson et al., 1998
- Kilbourne et al., 2004
- Sandbulte et al., 2007
- Bosch et al., 2010
- Marcelin et al., 2011
Influenza virus NA: under selective pressure

Colored: surface exposed positively selected:
(43, 46, 52 in stalk)

NA for the induction of protective immunity

Evasion from recognition by antibodies in nature: antigenic drift and shift

Functionally important in the virus replication cycle

Can confer a degree of cross-protection in the absence of matching HA (e.g. H5N1/H1N1)

Challenges:

- NA-specific antibodies with NAI activity protect
 - sensitive and specific assays needed

- NA-content in vaccines: standardize and stabilize

- Role of pre-existing NA-specific T cells: could contribute to improved vaccine responses
Innate response
Antigen-presenting cells (dendritic cells, macrophages)

\[\text{γδ-T cells} \rightarrow \text{NK cells} \rightarrow \text{Granulocytes} \]

Cytolytic cell killing

Soluble non-cytolytic factors (IFN, TNF-α, certain CC chemokines in the case of HIV-1, other molecules)

Defensin

Adaptive response
Antigen-presenting cells (dendritic cells, macrophages)

\[\text{CD8+ T cells} \rightarrow \text{CD4+ T cells} \rightarrow \text{B cells} \]

Humoral

Cellular

Cytolytic cell killing

Soluble non-cytolytic factors (IFN, TNF-α, certain CC chemokines in the case of HIV-1, other molecules)

Antibodies

CTL: a correlate of protection
-Lethal infection with heterosubtypic virus H5N1-
- H3N2-H5N1 model -

More rapid viral clearance correlates with secondary CTL responses

Cross-reactive T cells are involved in rapid clearance of 2009 Pandemic H1N1 influenza virus in nonhuman primates.

- Primary infection with seasonal H1N1 virus -

Magnitude and kinetics of secondary T cell response……

correlate with reduction of virus shedding and more rapid clearance of infection.

Adoptive transfer of post H3N2-infection T cells affords clinical protection against infection with H1N1pdm09 virus - But not of serum or B cells -

Cross-recognition of NP by human CTL -FATT-CTL assay-

Group I
1. #1
2. #2
3. #3
4. #4

Group II
5. #5
6. #6
7. #7
8. #8

Group III
10. #10
11. #11
12. #12
13. #13
14. #14
15. #15

% specific lysis

E:T ratio

NP A/NL/18/94 H3N2
NP A/VN/1194/04 H5N1
Empty vector control

Kinetics of T cell responses during acute A(H1N1)pdm09 influenza virus infection

- In adults with history of previous infections
- Very rapid recall response
 - Peaked < 1 week post infection
 - Recruitment and expansion of virus-specific CTL responses surprisingly fast

Hillaire et al. 2011, J. Virol. 85(22):12057-61
Analysis of the T cell response during acute A(H1N1)pdm09 influenza virus infection

Hillaire et al. 2011, J. Virol. 85(22):12057-61
Points to consider for vaccine development

• Antibodies to stem HA / M2 protein/NA
 • special delivery/antigen presentation systems
 • use of adjuvants
 • to guarantee induction of antibody levels sufficiently high for protection

• CD4 and CD8+ T cells to NP, M1 or other proteins
 • Induction requires specialized antigen delivery
 • endogenous antigen processing and MHC class I presentation
 • live vaccines
 • vectors (e.g. rec adenovirus, poxvirus)
 • DNA vaccines
 • special adjuvants (e.g. virosomes, ISCOMs)
 • Needs to be balanced

• For all these correlates of protection:
 • Minimal requirements of protection need to be established (surrogates)
 • assays?
 • Pre-clinical and clinical testing of candidate vaccines

• Local Immunity
 • Mucosal IgA antibodies
 • Resident virus-specific T cells