Prime-boost approaches to influenza vaccination

Catherine J. Luke Ph.D.
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, U.S.A

Prime-boost vaccination regimens

- Employ single or multiple vaccine platforms.
- Potential advantages include:
 - potentiation of immune response
 - increased breadth of immune response
 - antigen sparing
 - flexibility in vaccination schedules

Prime-boost: clinical experience with influenza vaccines

- Majority of studies are with H5N1 vaccines.
- Variety of platforms and intervals evaluated.
- Prime-boost regimens resulted in an increase in magnitude and breadth of antibody response.
- Mechanism of priming is largely poorly understood.

Prime-boost: clinical experience with inactivated H5N1 vaccines

<table>
<thead>
<tr>
<th>Priming vaccine</th>
<th>Booster vaccine</th>
<th>Interval</th>
<th>Cross-clade Ab response detected?</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5N1 i.v. x MT59</td>
<td>H5N1 i.v. x MT59</td>
<td>16 months</td>
<td>✓</td>
<td>Nicholson et al. 2001; Stephenson et al. 2009</td>
</tr>
<tr>
<td>H5N1 i.v. x MT59</td>
<td>H5N1 i.v.</td>
<td>7 years</td>
<td>✓</td>
<td>Galli et al. 2009</td>
</tr>
<tr>
<td>H5N1 i.v.</td>
<td>Homologous or heterologous clade i.v</td>
<td>1 month or 6 months ✓ (with heterologous clade booster)</td>
<td>Zangwili et al. 2006; Belshe et al. 2011</td>
<td></td>
</tr>
<tr>
<td>H5N1 WV (egg-derived) + alum</td>
<td>Homologous clade WV</td>
<td>12 months</td>
<td>Not tested</td>
<td>Lin et al. 2009</td>
</tr>
<tr>
<td>H5N1 WV (vero cell-derived) + alum</td>
<td>Heterologous clade WV</td>
<td>12-17 months</td>
<td>✓</td>
<td>Eielch et al. 2009</td>
</tr>
</tbody>
</table>
Prime-boost: clinical experience with H5N1 vaccines using a combination of platforms

<table>
<thead>
<tr>
<th>Priming vaccine</th>
<th>Booster vaccine</th>
<th>Interval</th>
<th>Cross-clade Ab response detected?</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rHA</td>
<td>ISV</td>
<td>6 years</td>
<td>✓</td>
<td>Treanor et al. 2001; Geij et al. 2008</td>
</tr>
<tr>
<td>DNA</td>
<td>ISV</td>
<td>4 or 24 weeks</td>
<td>✓</td>
<td>Ledgerwood et al. 2011</td>
</tr>
<tr>
<td>DNA</td>
<td>ISV</td>
<td>4, 12, 16 or 24 weeks</td>
<td>✓</td>
<td>Ledgerwood et al. 2013</td>
</tr>
<tr>
<td>Ad5 vectored vaccine x 3</td>
<td>ISV</td>
<td>3.5-15 months</td>
<td>✓</td>
<td>Gurwith et al. 2013</td>
</tr>
</tbody>
</table>

Priming by pandemic AA ca live attenuated influenza vaccines (pLAIV)

- H5N1 and H7 AA ca pLAIV were highly restricted in replication in healthy seronegative adults.
- H5N1 and H7 pLAIV elicited variable HAI, MN and ELISA Ab responses: H7N3 ca > H5N1 ca > H7N7 ca.
- Previous recipients of H5N1 and H7 pLAIV were recalled to receive a single dose of inactivated subvirion vaccine (ISV) of the corresponding subtype.

H5N1 pLAIV-ISV sequential vaccination study (JHU)

<table>
<thead>
<tr>
<th>Group</th>
<th>Previous pLAIV vaccination</th>
<th>Number of doses ISV</th>
<th>Time interval between prime and boost</th>
<th>Number of subjects enrolled</th>
<th>Number of SAEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H5N1 VN04 ca x 2</td>
<td>1</td>
<td>56 mo</td>
<td>11</td>
<td>1*</td>
</tr>
<tr>
<td>2</td>
<td>H5N1 HK03 ca x 2</td>
<td>1</td>
<td>54 mo</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>H7N3 BC04 ca x 2</td>
<td>1</td>
<td>52 mo</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>No previous LAIV of any kind</td>
<td>1</td>
<td>N/A</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>1 mo</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

Increased frequency and higher HAI titers in recipients of H5N1 pLAIV

<table>
<thead>
<tr>
<th>Prime</th>
<th>Boost</th>
<th>Frequency of responders and HAI Ab titers on d 28</th>
<th>Frequency of responders and HAI Ab titers on d 56</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n % Range GMT* % Range GMT*</td>
<td></td>
</tr>
<tr>
<td>VN04 ca</td>
<td>11</td>
<td>73 5-1280 222 82 5-960 112</td>
<td></td>
</tr>
<tr>
<td>HK03 ca</td>
<td>10</td>
<td>50 5-480 146 40 5-480 120</td>
<td></td>
</tr>
<tr>
<td>H7N3 ca</td>
<td>7</td>
<td>14 5-160 160 0 NA NA</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>20</td>
<td>10 5-640 277 10 5-240 120</td>
<td></td>
</tr>
<tr>
<td>VN04 ISV</td>
<td>20</td>
<td>40 5-640 81 50 5-320 76</td>
<td></td>
</tr>
</tbody>
</table>

*GMT in responders.
*HAI assay performed with wt A/VN/1203/04 (H5N1).

Breadth of the neutralizing antibody response in H5N1 pLAIV-primed individuals

pLAIV–ISV studies: Summary and Implications

- Prior receipt of pLAIV primes for
 - Higher titer response to a suboptimal dose of inactivated subunit vaccine
 - Increased frequency of response
 - Rapid response – as early as day 7
 - Greater breadth of reactivity against different clades of H5 viruses, and H7 viruses from North American and Eurasian lineages.

- Implications:
 - Clear evidence of an immune response to pLAIV.
 - Administration of a dose of inactivated vaccine is a useful means of unmasking the immune response to pLAIV.

Limitations of prime-boost studies

- Small numbers of subjects.

- Several studies rely on convenience samples – trials not initially designed to evaluate prime-boost regimen.

- Mechanism not studied.

Recommendations for future studies

- Conduct larger studies.

- Systematic evaluation of regimens using combinations of established and novel vaccine platforms.
Acknowledgements

CIDRVS
Subbarao Lab
Kanta Subbarao

HHS BARDA
Corrina Pavetto
Rick Bright
Bob Huebner

Sanofi Pasteur

NIAID RCHSPB
Jennifer Hertsch
Vanessa Eccard
Molly Buehn
Scott Garrand
John Tierney

Sanofi Pasteur

NIAID Division of Intramural Research

MedImmune/AZ Biologics
Raborn Mallory
Matthew Downham
Melissa Williams-Carver
Cory Shaffer
Kathy Coelingh
Hong Jin

University of Rochester
Theresa Fitzgerald
Tara Babu
Diane O'Brien
Doreen Francis
John Tierney

CIR, Johns Hopkins University
Kawtar Talat
Bridget McMahon
Ruth Karron

NIAID Biostatistics Branch
Dean Follmann
Jing Qin

PATH
Kathy Neuill
Kristen Lewis

CBER FDA
Surender Khurana
Hana Golding

Study Volunteers