Development and evaluation of influenza vaccines based on adenovirus and MVA as vectors
Sarah C Gilbert
T Cells Protect Against Influenza

• In animal studies, T cells against NP protect against flu challenge

• In clinical trials of flu virus challenge, in volunteers with naturally acquired immunity to flu, T cells protect against flu challenge
 – One third of volunteers protected, even if they did not have antibodies recognising the challenge virus, plus some evidence of cross-subtype protection, McMichael NEJM 1983
 – Pre-existing influenza-specific CD4+ T cells responding to internal proteins correlate with disease protection against influenza challenge in humans, Wilkinson Nat Med 2012
T cells also recognise H5N1 peptides even in the UK population

Cross-reactive responses recognise Matrix (red) and NP (blue) most frequently
Lee et al. JCI 2008 118:3478-90
T Cell Responses Decline After Natural Infection

The half life of CD8+ T cells recognising flu is 2-3 years.

A T cell boosting vaccine could potentially achieve protective levels in anyone previously exposed to ‘flu.

Boosting to higher levels mean protection lasts longer.

MVA-NP+M1

- Antigen: NP:M1 fusion protein.
- H3N2 sequences used
- Flexible linker between NP and M1, total coding sequence 758 aa
- Inserted at TK locus of MVA, Vaccinia P7.5 promoter, no marker
- Single intramuscular injection
Safety and Immunogenicity in Phase I

Safety as expected for MVA vaccination

T cell responses extremely high – only seen at this level post BCG priming and MVA 85A boosting for TB

The majority of the T cell response is CD8+ (before and after vaccination)

Berthoud et al., Clin Infect Dis. 2011 52: 1-7
The response is mainly CD8$^+$

CD8$^+$ and CD4$^+$ T cells that secrete IFN-γ before and after MVA-NP+M1 immunisation.

Data from group receiving 2.5 x 108 pfu i.m.

Berthoud et al., Clin Infect Dis. 2011 52: 1-7
Vaccinees Aged 50 plus

Clonality studies indicated that MVA-NP+M1 expanded pre-existing memory CD8\(^+\) T cells. The observed CD27\(^+\)CD45RO\(^+\)CD57\(^-\)CCR7\(^-\) phenotype indicates a lack of terminal differentiation and senescence.

Phase IIa Flu A Challenge

• Screen volunteers for low HI titre
 – Volunteers recruited at Oxford CCVTM and Southampton WTCRF, age 18-45 years

• Challenge with well characterised drug-sensitive flu A

• Volunteers remain in containment for 7-10 days, monitor symptoms and virus shedding (nasal washes) daily
 – Challenge and quarantine phase conducted by Retroscreen Virology Ltd., London

• Measure T cell responses before and after vaccination and challenge.
Clinical Outcome

Challenge virus was H3N2 A/Wisconsin/67/2005

Influenza challenge study:
Three volunteers shed virus on more than one day but did not seroconvert.
Not associated with more severe symptoms

<table>
<thead>
<tr>
<th>Vol No</th>
<th>Total symptom score</th>
<th>Symptom severity</th>
<th>Virus (\log_{10} \text{TCID}_{50}) shed on day following challenge</th>
<th>Lab con. flu</th>
<th>HI post chall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>58</td>
<td>26</td>
<td>mild</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>3</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>0</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>mild</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>27</td>
<td>mild</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>29</td>
<td>mod/sev</td>
<td>3.25</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>12</td>
<td>mild</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>29</td>
<td>mod/sev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>20</td>
<td>mild</td>
<td>3.25</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>29</td>
<td>mod/sev</td>
<td>2.75</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>4</td>
<td>mild</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>35</td>
<td>mod/sev</td>
<td>3.5</td>
<td>5.5</td>
<td>1.75</td>
</tr>
<tr>
<td>87</td>
<td>38</td>
<td>mod/sev</td>
<td>3.00</td>
<td>3.25</td>
<td>2.5</td>
</tr>
<tr>
<td>86</td>
<td>0</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>1</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>4</td>
<td>mild</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>8</td>
<td>mild</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Immunogenicity for co-administration of MVA-NP+M1 and TIV in mice

*** $p<0.0001$

Mullarkey et al., submitted
‘Adjuvanting’ HA broadens the response

• DNA prime/Ad boost with H1HA elicited a broadened pseudotype neutralization response within the H1 subtype and some cross-reactivity against H2N2 and H5N1 viruses: Wei 2010

• MVA H5HA, cross-clade neutralisation: Kreijtz 2009

• MF59 adjuvanted H5HA, cross-clade responses: Galli 2009
How to apply this?

• MVA-NP+M1 does not need frequent updating
 – can be manufactured at scale, year round, ready to combine with HA protein (inactivated or recombinant)
• HA protein needs to be updated in response to genetic drift,
 – but as adjuvanted vaccines induce more cross-reactive responses, annual updates are not necessary
• Year-round manufacture and vaccination therefore becomes possible
 – Continue surveillance, update HA only after significant changes or introduction of a new subtype
Clinical Study FLU003

• Adults aged 50 years or over randomised to receive TIV or TIV + MVA-NP+M1
• Measure T cell responses to NP and M1, HI titres to all three TIV components
• Further assays to assess the breadth of humoral responses
• Manuscript now in preparation
ChAdOx1 NP+M1

- Novel simian adenovirus ChAdOx1 expressing the same NP+M1 insert has now completed dose escalation studies in preparation for

<table>
<thead>
<tr>
<th>Prime</th>
<th>Boost</th>
<th>Interval (weeks)</th>
<th>No of subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChAdOx1</td>
<td>MVA</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>MVA</td>
<td>ChAdOx1</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>ChAdOx1</td>
<td>MVA</td>
<td>52</td>
<td>12</td>
</tr>
<tr>
<td>MVA</td>
<td>ChAdOx1</td>
<td>52</td>
<td>12</td>
</tr>
</tbody>
</table>
In Summary

- MVA-NP+M1 boosts T cell responses to conserved antigens of influenza to levels that can protect against disease and virus shedding.
- Co-administration of MVA-NP+M1 with a protein HA vaccine additionally results in increased humoral responses to HA.
- This provides a rapidly deployable solution to inducing broad immunity to influenza.
- ChAdOx1 NP+M1 dose escalation studies completed, Phase I studies to start Q2 2013.
Acknowledgements

Jenner Flu Group
Tamara Berthoud
Teresa Lambe
Rachel Roberts
Richard Antrobus
Patrick Lillie
Caitlin Mullarkey
Linda Coughlan

Jenner Vector Development
Matt Cottingham
Matt Dicks
Nick Edwards

WTCRF Southampton
Tom Havelock
Saul Faust

Retroscreen Virology Ltd
Rob Lambkin Williams
Anthony Gilbert
Alex Mann
Ganesh Balaratnam
John Oxford

Our funders

And many thanks to all our volunteers.