ALVAC®-HIV and AIDSVAX® B/E Prime-Boost HIV-1 Preventive Vaccine Regimen

Results of the Thai HIV Vaccine Trial, RV144

for the MOPH-TAVEG Collaboration

Primary data were published online by the New England Journal of Medicine 20 October 2009 at 1001 CET.

RV 144

- Trial Objectives and Design
- Demographics
- Results
 - Efficacy
 - immunogenicity
Trial Objectives

Primary

- To determine whether immunization with ALVAC®-HIV (vCP1521) boosted by AIDSVAX® B/E gp120 B/E protects Thai volunteers from HIV infection.
 - 90.8% power to detect difference if true VE=50%
- To determine effect of immunization on viral load after intercurrent infection.
 - 80% power to detect a 0.39 log difference in VL setpoint (if VE = 50%)
 - Mean of log viral load at first 3 planned assessments at/after serologic diagnosis

Secondary

- To determine effect of immunization on CD4 cell count after intercurrent infection.
- To confirm the safety of this vaccine combination.
- To evaluate whether participation is associated with behavior change increasing risk of HIV infection.

Study Vaccines

ALVAC®-HIV (vCP1521)

- Recombinant canarypox vector vaccine genetically engineered to express HIV-1 gp120 (subtype E: 92TH023) linked to the transmembrane anchoring portion of gp41 (subtype B: LAI), and HIV-1 gag and protease (subtype B: LAI).

AIDSVAX® B/E

- Bivalent HIV gp120 envelope glycoprotein vaccine containing a subtype E envelope from the HIV-1 strain CM244 and a subtype B envelope from the HIV-1 strain MN.
Design

- Community-based, randomized, double-blind, placebo-controlled trial (vaccine: placebo 1:1)
- Volunteers: HIV negative, 18-30 years of age
- Excluded: chronic disease, pregnancy or breastfeeding
- 6-month period of study vaccinations
- HIV testing every 6 months for 3 years post-vaccination

Vaccination and Follow-up Schedule

HIV test, risk assessment and counseling

6-month vaccination schedule

3 years of follow-up (every 6 mo.)

ALVAC^HIV (vCP1521) priming at week 0, 4, 12, 24

AIDSVAX^B/E gp120 boosting at week 12, 24
RV 144

- Trial Objectives and Design
- Demographics
- Results
 - Efficacy
 - Immunogenicity

Trial Numbers/Demographics

- 26,676 18-30 yr old screened
 - 40% Female
- 16,402 enrolled
- 16,395 in modified ITT (mITT) analysis
 - 7 were HIV infected at time of first immunization; they are included in safety analysis but not mITT
 - 8197 Vaccine (V): 8198 Placebo (P)
- Baseline Demographics
 - Study arms balanced for gender, age, province and site, marriage status, behavioral risks including drug use, etc.
 - Behavioral Risks: 48% low, 28% intermediate, 24% high
RV 144

- Trial Objectives and Design
- Demographics
- Results
 - Efficacy
 - Immunogenicity

Acquisition – Modified ITT*

- 125 Infections
 - 51 vaccinees
 - 74 placebos
- VE = 31.2% (p = 0.039, two-tailed; OBF adjusted 95% CI 1.1%–52.1%)
 - VE in males (26%) and females (39%)
- Incidence
 - 0.28% HIV incidence in placebo arm; study design based on 0.34% or 78 placebo infections
 - Similar in males and females
- Analysis adjusting for covariates and in a multivariate model showed no impact on VE
Acquisition Endpoint: Modified Intent-to-Treat (mITT)

Vaccine infections: 51
Placebo infections: 74
p = 0.04
Efficacy: 31.2%
95% CI (OBF): 1.1, 51.2

Probability of HIV-1 Infection (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
YEARS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Placebo
Vaccine

Co-primary Endpoint 2:
No difference in post-infection setpoint viral load

Mean Setpoint Viral Load
Vaccine recipients: 4.3 log_{10}
Placebo recipients: 4.2 log_{10}
p = NS
No difference in post-infection CD4+ T cell count

Mean CD4 T cell count @ notification and verification visits
Vaccine: 554.7/ul (SE = 38.0)
Placebo: 567.5/ul (SE = 27.2)
p = NS

Safety and Reactogenicity

The vaccine regimen was safe and well tolerated.
Trial Objectives and Design
Demographics
Results
- Efficacy
- Immunogenicity
IFN-γ/IL-2 ICS

6 months post-final vaccination

<table>
<thead>
<tr>
<th>Antigen</th>
<th>CD4 V</th>
<th>CD4 P</th>
<th>CD8 V</th>
<th>CD8 P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Env Only</td>
<td>45/142 (32)*</td>
<td>1/54 (2)</td>
<td>5/133 (4)</td>
<td>4/52 (8)</td>
</tr>
<tr>
<td>Gag Only</td>
<td>0/144</td>
<td>0/56</td>
<td>3/136 (2)</td>
<td>1/53 (2)</td>
</tr>
<tr>
<td>Env + Gag</td>
<td>2/142 (1)</td>
<td>0/54</td>
<td>0/131</td>
<td>0/51</td>
</tr>
<tr>
<td>Any HIV</td>
<td>47/142 (33)*</td>
<td>1/54 (2)</td>
<td>8/131 (6)</td>
<td>5/51 (10)</td>
</tr>
</tbody>
</table>

*P <0.0001 compared to placebo

Ag-Specific Lymphoproliferation

2 weeks post-final vaccination

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Vaccinee</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp120 E (A244)</td>
<td>61/68 (90)</td>
<td>4/24 (17)</td>
</tr>
<tr>
<td>gp 120 B (MN)</td>
<td>51/57 (89)</td>
<td>4/21 (19)</td>
</tr>
<tr>
<td>p24</td>
<td>31/56 (55)</td>
<td>3/22 (14)</td>
</tr>
</tbody>
</table>

P<0.001 compared to placebo group - all Antigens
Binding Antibody

2 weeks post-final vaccination

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Frequency (%)</th>
<th>Reciprocal GMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B gp120</td>
<td>140/142 (99)</td>
<td>31207 (800-204800)</td>
</tr>
<tr>
<td>E gp120</td>
<td>14558 (200-204800)</td>
<td></td>
</tr>
<tr>
<td>B p24</td>
<td>74/142 (52)</td>
<td>138 (50-1600)</td>
</tr>
</tbody>
</table>

P<0.0001 compared to placebo group - all Antigens

Phase I/II versus RV144

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>ELSpot</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>CD8 CrCTL</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>LPA</td>
<td>53%</td>
<td>51%</td>
</tr>
<tr>
<td>P24 EIA</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Gp120 EIA</td>
<td>100%</td>
<td>96%</td>
</tr>
</tbody>
</table>
Conclusions

1. The observed vaccine efficacy in the mITT analysis was 31.2% [p = 0.04, 95% CI (OBF) 1.1, 52.1].
2. There is no difference in early viremia between vaccine and placebo recipients.
3. The vaccine regimen is safe and well tolerated.
4. Self-reported behavioral risk was the same in vaccine and placebo groups.
5. Immunogenicity reveals binding Ab, ADCC (RV 135), and CD4+ T-cell responses

Acknowledgements

- RV144 volunteers and community members
- AFRIMS – US and Thai Component
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH
- Faculty of Tropical Medicine, Mahidol University
- Global Solutions for Infectious Diseases
- Henry M. Jackson Foundation for the Advancement of Military Medicine
- Ministry of Public Health, Thailand
- sanofi pasteur
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research; U.S. Army Medical Research and Materiel Command
Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand

Supachai Rerks-Ngarm, M.D., Punnee Pittisutthihum M.D., D.T.M.H., Sorachai Nityapaphan, M.D., Ph.D., Jatarit Kaewkungwal Ph.D., Joseph Chiu, M.D., Robert Paris, M.D., Nalinee Premesci, M.D., Chawetsan Namwut, M.D., Mark de Souza, Ph.D., Elizabeth Adams, M.D., Michael Bernier, M.D., Sanjay Gurunathan, M.D., Jim Tartaglia, Ph.D., John G. McNeil, M.D., Donald P. Francis, M.D., D.Sc., Donald Stablein, Ph.D., Deborah L. Bires, M.D., Suparat Chonsutitwot, M.D., Chinsak Khambounsang, M.D., Prassert Thongchareon, M.D., Ph.D., Marlin L. Robb, M.D., Nelson L. Michael, M.D., Ph.D., Prapsa Karuasol, M.D., and Jerome H. Kim, M.D., for the MOPH-TAVEG Investigators.

October 20, 2009