Observed and Modeled impact of different HPV immunization schedules and strategies

Brisson M1,2,3, Drolet M2, Jit M4,5, Laprise JF2, Boily MC3, Alary M1,2, Baussano I6, Franceschi S6, Martin D2, Bénard É2

1.Université Laval, 2. Centre de recherche du CHU de Québec, 3. Imperial College, 4. London School of Hygiene & Tropical Medicine, 5. Public Health England, 6. International Agency for Research on Cancer (IARC)

Meeting of the Strategic Advisory Group of Experts on Immunization (SAGE)
October 20, 2016
Geneva
Objective

• Summarize existing evidence about the population-level effectiveness and cost-effectiveness of HPV immunization of different schedules and strategies, using:
 - Observational post-vaccination data
 - Predictions from Mathematical Models

Schedules/strategies

• Girls-only HPV immunization (2- or 4- vs 9-valent)
• Gender-neutral HPV immunization (vs Girls-only)
• Multiple age cohort HPV immunization (vs single age cohort)
Observed population-level effectiveness

Systematic review & meta-analysis
Methods
Systematic reviews - Population-level effectiveness & herd effects

- We conducted two systematic reviews
 - Initial review: Studies published between Jan 2007 & Feb 2014
 - Updated review: Studies published between Feb 2014 & July 2016
 - Used same methodology

- Search strategy
 - Medline and Embase, and main HPV conference abstracts

- Eligibility
 - Comparisons between pre- and post-vaccination periods
 - Incidence/prevalence of HPV infection, anogenital warts, or CIN2+

- Analysis (initial review only)
 - Stratified by age & sex
 - Pooled relative risk (RR) derived from random-effects models

Results of review1 Girls-only immunization

High Income Countries with \textit{≥ 50% vaccination coverage} of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=5)*</td>
<td></td>
<td>0.32 [0.19; 0.52]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.39 [0.22; 0.71]</td>
</tr>
<tr>
<td>CIN2+ (n=1)</td>
<td></td>
<td>0.69 [0.66; 0.73]</td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=2)†</td>
<td></td>
<td>0.42 [0.16; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.68 [0.51; 0.89]</td>
</tr>
<tr>
<td>Cin2+ (n=1)</td>
<td></td>
<td>1.11 [1.10; 1.12]</td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)2</td>
<td></td>
<td>0.37 [0.12; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.66 [0.47; 0.91]</td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)</td>
<td></td>
<td>0.85 [0.35; 2.03]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.82 [0.72; 0.92]</td>
</tr>
</tbody>
</table>

RR=prevalence ratio (post-vaccination \div pre-vaccination prevalence); * 13-19 year age group; † 20-24 years age group

Results of review

Girls-only immunization

High Income Countries with ≥ 50% vaccination coverage of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=5)*</td>
<td></td>
<td>0.32 [0.19; 0.52]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.39 [0.22; 0.71]</td>
</tr>
<tr>
<td>CIN2+ (n=1)</td>
<td></td>
<td>0.69 [0.66; 0.73]</td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=2)†</td>
<td></td>
<td>0.42 [0.16; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.68 [0.51; 0.89]</td>
</tr>
<tr>
<td>Cin2+ (n=1)</td>
<td></td>
<td>1.11 [1.10; 1.12]</td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)²</td>
<td></td>
<td>0.37 [0.12; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.66 [0.47; 0.91]</td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)</td>
<td></td>
<td>0.85 [0.35; 2.03]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.82 [0.72; 0.92]</td>
</tr>
</tbody>
</table>

RR=prevalence ratio (post-vaccination ÷ pre-vaccination prevalence); * 13-19 year age group; † 20-24 years age group

Results of review

Girls-only immunization

High Income Countries with $\geq 50\%$ vaccination coverage of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=5)*</td>
<td></td>
<td>0.32 [0.19; 0.52]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.39 [0.22; 0.71]</td>
</tr>
<tr>
<td>CIN2+ (n=3)</td>
<td>More data showing significant decreases in CIN2+ among girls 15-19 years old$^{3-4}$</td>
<td></td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=2)†</td>
<td></td>
<td>0.42 [0.16; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.68 [0.51; 0.89]</td>
</tr>
<tr>
<td>Cin2+ (n=1)</td>
<td></td>
<td>1.11 [1.10; 1.12]</td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)2</td>
<td></td>
<td>0.37 [0.12; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.66 [0.47; 0.91]</td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)</td>
<td></td>
<td>0.85 [0.35; 2.03]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.82 [0.72; 0.92]</td>
</tr>
</tbody>
</table>

Results of review

Girls-only immunization

High Income Countries with \(\geq 50\% \) vaccination coverage of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=5)*</td>
<td></td>
<td>0.32 [0.19; 0.52]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.39 [0.22; 0.71]</td>
</tr>
<tr>
<td>CIN2+ (n=3)</td>
<td>More data showing significant decreases in CIN2+ among girls 15-19 years old</td>
<td></td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=2)†</td>
<td></td>
<td>0.42 [0.16; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.68 [0.51; 0.89]</td>
</tr>
<tr>
<td>Cin2+ (n=1)</td>
<td></td>
<td>1.11 [1.10; 1.12]</td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)²</td>
<td></td>
<td>0.37 [0.12; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.66 [0.47; 0.91]</td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)</td>
<td></td>
<td>0.85 [0.35; 2.03]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.82 [0.72; 0.92]</td>
</tr>
</tbody>
</table>

Results of review Girls-only immunization
High Income Countries with ≥ 50% vaccination coverage of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=5)*</td>
<td>0.32 [0.19; 0.52]</td>
<td></td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td>0.39 [0.22; 0.71]</td>
<td></td>
</tr>
<tr>
<td>CIN2+ (n=3) More data showing significant decreases in CIN2+ among girls 15-19 years old³⁻⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=2)†</td>
<td>0.42 [0.16; 1.10]</td>
<td></td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td>0.68 [0.51; 0.89]</td>
<td></td>
</tr>
<tr>
<td>CIN2+ (n=1)</td>
<td>1.11 [1.10; 1.12]</td>
<td></td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)²</td>
<td>0.37 [0.12; 1.10]</td>
<td></td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td>0.66 [0.47; 0.91]</td>
<td></td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)</td>
<td>0.85 [0.35; 2.03]</td>
<td></td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td>0.82 [0.72; 0.92]</td>
<td></td>
</tr>
</tbody>
</table>

Results of review\(^1\) Girls-only immunization
High Income Countries with ≥ 50% vaccination coverage of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=5)*</td>
<td></td>
<td>0.32 [0.19; 0.52]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.39 [0.22; 0.71]</td>
</tr>
<tr>
<td>CIN2+ (n=3)</td>
<td></td>
<td>More data showing significant decreases in CIN2+ among girls 15-19 years old(^3)-(^4)</td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=2)(^1)</td>
<td></td>
<td>0.42 [0.16; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.68 [0.51; 0.89]</td>
</tr>
<tr>
<td>CIN2+ (n=1)</td>
<td></td>
<td>1.11 [1.10; 1.12]</td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)(^2)</td>
<td></td>
<td>0.37 [0.12; 1.10]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.66 [0.47; 0.91]</td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1)</td>
<td></td>
<td>0.85 [0.35; 2.03]</td>
</tr>
<tr>
<td>AGW (n=3)</td>
<td></td>
<td>0.82 [0.72; 0.92]</td>
</tr>
</tbody>
</table>

Results of review\(^1\) Girls-only immunization

High Income Countries with < 50% vaccination coverage of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1) *</td>
<td></td>
<td>0.50 [0.34; 0.74]</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td></td>
<td>0.86 [0.79; 0.94]</td>
</tr>
<tr>
<td>CIN2+ (n=0)</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=4) †</td>
<td></td>
<td>0.96 [0.77; 1.18]</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td></td>
<td>1.02 [0.90; 1.16]</td>
</tr>
<tr>
<td>CIN2+ (n=1)</td>
<td></td>
<td>0.97 [0.92; 1.02]</td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=0)</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td></td>
<td>1.07 [0.93; 1.22]</td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=0)</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td></td>
<td>1.13 [0.95; 1.33]</td>
</tr>
</tbody>
</table>

RR=prevalence ratio (post-vaccination ÷ pre-vaccination prevalence); * 13-19 year age group; † 20-24 years age group

Results of review\(^1\) Girls-only immunization

High Income Countries with \(< 50\%\) vaccination coverage of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1) (^*)</td>
<td>0.50 [0.34; 0.74]</td>
<td></td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td>0.86 [0.79; 0.94]</td>
<td></td>
</tr>
<tr>
<td>CIN2+ (n=0)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=4) (^\dagger)</td>
<td>0.96 [0.77; 1.18]</td>
<td></td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td>1.02 [0.90; 1.16]</td>
<td></td>
</tr>
<tr>
<td>CIN2+ (n=1)</td>
<td>0.97 [0.92; 1.02]</td>
<td></td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=0)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td>1.07 [0.93; 1.22]</td>
<td></td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=0)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td>1.13 [0.95; 1.33]</td>
<td></td>
</tr>
</tbody>
</table>

RR=prevalence ratio (post-vaccination ÷ pre-vaccination prevalence); \(^*\) 13-19 year age group; \(^\dagger\) 20-24 years age group

Results of review

Girls-only immunization

High Income Countries with **< 50% vaccination coverage** of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1) *</td>
<td>[0.50; 0.74]</td>
<td>0.50 [0.34; 0.74]</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td>[0.79; 0.94]</td>
<td>0.86 [0.79; 0.94]</td>
</tr>
<tr>
<td>CIN2+ (n=2)</td>
<td></td>
<td>New data from US: Significant decrease in CIN2+ lesions</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Women 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=4) †</td>
<td>[0.77; 1.18]</td>
<td>0.96 [0.77; 1.18]</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td>[0.90; 1.16]</td>
<td>1.02 [0.90; 1.16]</td>
</tr>
<tr>
<td>CIN2+ (n=1)</td>
<td></td>
<td>0.97 [0.92; 1.02]</td>
</tr>
<tr>
<td>Boys 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=0)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td>[0.93; 1.22]</td>
<td>1.07 [0.93; 1.22]</td>
</tr>
<tr>
<td>Men 20-39 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=0)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td>[0.95; 1.33]</td>
<td>1.13 [0.95; 1.33]</td>
</tr>
</tbody>
</table>

RR=prevalence ratio (post-vaccination ÷ pre-vaccination prevalence); * 13-19 year age group; † 20-24 years age group

Results of review

Girls-only immunization

High Income Countries with < 50% vaccination coverage of girls

<table>
<thead>
<tr>
<th>Outcomes (n of studies)</th>
<th>RR, 95% CI</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls 15-19 years old</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV 16/18 (n=1) *</td>
<td></td>
<td>0.50 [0.34; 0.74]</td>
</tr>
<tr>
<td>AGW (n=6)</td>
<td></td>
<td>0.86 [0.79; 0.94]</td>
</tr>
<tr>
<td>CIN2+ (n=2)</td>
<td></td>
<td>New data from US: Significant decrease in CIN2+ lesions 2-3</td>
</tr>
</tbody>
</table>

Women 20-39 years old

HPV 16/18 (n=4) †		0.96 [0.77; 1.18]
AGW (n=6)		1.02 [0.90; 1.16]
Cin2+ (n=1)		0.97 [0.92; 1.02]

Boys 15-19 years old

| HPV 16/18 (n=0) | | NA |
| AGW (n=6) | | 1.07 [0.93; 1.22] |

Men 20-39 years old

| HPV 16/18 (n=0) | | NA |
| AGW (n=6) | | 1.13 [0.95; 1.33] |

Favours vaccination

RR=prevalence ratio (post-vaccination ÷ pre-vaccination prevalence); * 13-19 year age group; † 20-24 years age group

Results Gender-neutral & multiple age cohort immunization

- Gender-neutral immunization
 - 2 countries with population-level data after Gender-neutral immunization (Australia, the USA)\(^1-6\)
 - Too early to measure the additional impact of Gender-neutral vaccination
 - Max follow-up available is 1-2 years after the switch from girls-only to gender-neutral vaccination

- Multiple age cohort immunization
 - Many countries vaccinated many age cohorts (Australia, Canada, Denmark, Greece, New-Zealand, Norway, Sweden, the UK and the US)
 - Too few countries without Multiple age cohort immunization to isolate the additional population-level impact of this strategy (vs a single cohort)

Need for mathematical models

- Compelling population-level evidence suggest that **Girls-only HPV immunization programs**:
 - Reduce HPV-16/18 infection, anogenital warts and CIN2+ lesions
 - Provide herd effects
 - Magnitude of impact strongly depend on vaccination coverage

- Remaining questions: What will be the long term-population level effectiveness, and expected cost-effectiveness of:
 - Girls-only HPV immunization with 2- or 4-valent vs 9-valent
 - Gender-neutral vs Girls-only HPV immunization
 - Multiple vs single age cohort HPV immunization

- Mathematical models provide a formal framework to examine these questions
Predicted population-level effectiveness, herd effects & cost-effectiveness

Model-based analysis
Methods

Modeling - Population-level effectiveness & herd effects

HPV-ADVISE (Agent-based Dynamic model for Vaccination & Screening Evaluation)\(^1\)

- Transmission-dynamic model of HPV infection and disease (includes herd immunity)

- Models 18 HPV types:
 - Types included in the 9-valent vaccine (HPV-6/11/16/18/31/33/45/52/58)
 - 9 other high risk types

- Fit HPV-ADVISE to Canada, India, Vietnam, and Uganda\(^\&\):
 - Demographic and sexual behaviour
 - HPV prevalence and cervical cancer incidence (age and type-specific)
 - Data from international databases and original studies\(^\&\)

\(^{\text{REF}}\): 1. Brisson, *JNCI* 2015; &: Demographic and Health Surveys, Multiple Indicator Survey, ICO information Centre on HPV and Cancer, United Nations Statistics Division, HIV and AIDS HUB for Asia Pacific-Evidence to action, WHO Global Health Observatory data repository, literature reviews, and original studies from IARC and Dr. M Alary (see back-up slides for references & model fit)
High risk HPV prevalence, women data for model fit

REF: Literature review (see back-up slides)
Sexual behavior & Cervical cancer data for model fit

Lifetime partners

Mean number

Women

Canada*
Vietnam
India
Uganda

Men

Had sex < 15 yrs old

Partner > 10 yrs older, 15-19 yr-old girls

Cervical cancer

Cervical cancer Incidence (per 100,000 w-yr)

Age (yrs)

15-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75+

Start sex

Proportion (%)

Canada Lifetime partners estimated from USA data

REF: Sexual activity:
Demographic and Health Surveys, Multiple Indicator Survey, HIV and AIDS HUB for Asia Pacific-Evidence to action, National Health and Nutrition Examination Survey, National Survey of Family Growth
Cervical cancer:
GLOBOCAN 2012 (extrapolated from cervical cancer incidence by age)

* Canada Lifetime partners estimated from USA data

12
Methods

Modeling - Cost-effectiveness

Systematic Review:\(^1\):

- Cost-effectiveness studies published up to July 2016

PRIME (Papillomavirus Rapid Interface for Modelling and Economics)\(^2\)

- Developed by scientists from U Laval and London School of Hygiene and Tropical Medicine, in collaboration with WHO (www.PRIMEtool.org)

- Static model (no herd effects)

- Reproduces country-specific cervical cancer incidence and mortality, % of cervical cancer due to the vaccine types, vaccine costs

- Model predictions for 179 countries

REF: 1. Chaiyakunapruk (SAGE background documents); 2. Jit, *Lancet Global Health* 2014 (see back-up slides for PRIME description)
Vaccinating Girls-only
(vs no vaccination)

Model predictions
Effectiveness & Cost-effectiveness
Effectiveness: Women HPV-16/18

Girls-only vaccination (age=10yrs old), Vaccine duration=Lifelong, Vaccine Efficacy=95%

% Reduction in HPV-16/18 prevalence

Years since start of Vaccination

&: HPV-ADVISE, Median (line), and 10 and 90th percentiles (area) of the model predictions
Effectiveness: Cervical cancer

Girls-only & 9-valent (age=10yrs), Coverage=80%, Vacc duration=Lifelong, Vacc efficacy=95%

- **Canada:** 84%
- **Vietnam:** 69%
- **India:** 72%
- **Uganda:** 81%

&: HPV-ADVISE, Median (line), and 10th and 90th percentiles (area) of the model predictions
Absolute reduction in Cervical cancer

Girls-only & 9-valent (age=10yrs), Coverage=80%, Vacc duration=Lifelong, Vacc efficacy=95%

CANADA

INDIA

VIETNAM

UGANDA

Change in cervical cancer incidence (per 100,000)

Years since start of Vaccination

*: HPV-ADVISE, Median of the model predictions; Incidence of squamous cell carcinoma
Cost-effectiveness: Girls-only vaccination

• Models from HIC1-4 & LMIC5 produce consistent conclusions

• Girls-only immunization is cost-effective (vs no vaccination)1,3,4
 - at current prices of the 2- and 4-valent vaccines
 - irrespective of the vaccine used
 - even when assuming no cross-protection or herd effects

• For example, Girls-only immunization is cost-effective in 173/179 countries in a global analysis using PRIME5
 - including only the direct impact on vaccinated women
 - including only cervical cancer as an outcome
 - using different cost-effectiveness thresholds

• Main driver: Prevention of HPV-16/18 related cervical cancer

Vaccinating Girls-only

9-valent vaccine (vs 2/4-valent)

Model predictions
Effectiveness & Cost-effectiveness
Contribution of HPV-types to cervical cancer

Potential for cancer prevention through HPV vaccination, data for model fit

Contribution of HPV-types to cervical cancer
Potential for cancer prevention through HPV vaccination, data for model fit

2- or 4-valent vaccine: Cervical cancer

Girls-only (age=10 yrs), Coverage=80%, Vacc duration=Lifelong, Vacc Efficacy=95%

\&: HPV-ADVISE, Median (line) of model predictions, High Cross protection 2-valent (CP)=Max CP in Malagon LID 2013
9-valent vs 2- or 4-valent vaccine: Cervical cancer

Girls-only (age=10 yrs), Coverage=80%, Vacc duration=Lifelong, Vacc Efficacy=95%

% Reduction in Cervical Cancer

- No cross-protection
- High cross-protection
- 9-valent vaccine

Years since start of Vaccination

&: HPV-ADVISE, Median (line) of model predictions, High Cross protection 2-valent (CP)=Max CP in Malagon LID 2013
Cost-effectiveness: 9-valent vaccine
vs 2-valent or 4-valent vaccine

• **HIC**: 9-valent immunization is cost-effective in Canada, Austria, and cost saving in the US1-6
 - when additional cost/dose of the 9-valent was 10-15\% greater than the 4-valent

• **LMIC**: Girls-only 9-valent immunization is cost-effective in LMIC, in a global analysis using PRIME7
 - assuming 2-dose vaccination & cost/dose of the 9-valent in the same range as the 2- and 4-valent vaccines
 - 9-valent was not cost-effective (vs 2-valent), under assumptions of maximum cross-protection for the 2-valent vaccine

Gender-neutral vaccination

Model predictions

Effectiveness & Cost-effectiveness
Long term effectiveness: HPV-16/18

Girls-only vaccination (age=10yrs old), Vaccine duration=Lifelong, Vaccine efficacy=95%

&: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination; **NOTE**: Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions; CA=Canada, VN=Vietnam, IN=India, UG=Uganda
Long term effectiveness: Men/Herd Immunity

Girls-only vaccination (age=10yrs old), Vaccine duration=Lifelong, Vaccine efficacy=95%

Relative reduction (%), HPV-16/18 prevalence

©: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination; **NOTE**: Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions; CA=Canada, VN=Vietnam, IN=India, UG=Uganda
Long term effectiveness: Men/Herd Immunity

Girls-only vaccination (age=10yrs old), Vaccine duration=Lifelong, Vaccine efficacy=95%

Relative reduction (%), HPV-16/18 prevalence

- **Women**
 - CA: 54, VN: 38, IN: 43, UG: 53
 - 40% coverage: 91, 76, 80, 89
 - 80% coverage: 61, 65

- **Men**
 - CA: 83, VN: 61, IN: 65, UG: 82
 - 40% coverage: 42, 24, 30, 46
 - 80% coverage: 53, 89

&: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination; NOTE: Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions; CA=Canada, VN=Vietnam, IN=India, UG=Uganda
Long term effectiveness: HPV-16/18
Girls-only & **Girls&Boys vaccination**, Vaccine duration=Lifelong, Vaccine efficacy=95%

<table>
<thead>
<tr>
<th>Girls-only</th>
<th>Girls&Boys</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 40%</td>
<td>VN 40%</td>
</tr>
<tr>
<td>40% coverage</td>
<td>80% coverage</td>
</tr>
<tr>
<td>74</td>
<td>54</td>
</tr>
<tr>
<td>71</td>
<td>60</td>
</tr>
<tr>
<td>74</td>
<td>60</td>
</tr>
<tr>
<td>95</td>
<td>91</td>
</tr>
</tbody>
</table>

Note: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination; **NOTE:** Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions; CA=Canada, VN=Vietnam, IN=India, UG=Uganda
Long term effectiveness: HPV-16/18

Girls-only & **Girls&Boys vaccination**, Vaccine duration=Lifelong, Vaccine efficacy=95%

&: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination; **NOTE:** Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions; CA=Canada, VN=Vietnam, IN=India, UG=Uganda
Long term effectiveness: HPV-16/18
Girls-only & **Girls&Boys vaccination**, Vaccine duration=Lifelong, Vaccine efficacy=95%

&: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination; **NOTE**: Box plots represent the median, and 10, 25, 75, and 90\(^{th}\) percentiles of the model predictions; CA=Canada, VN=Vietnam, IN=India, UG=Uganda
Effectiveness: Increasing coverage in Girls or Boys?

Girls-only & **Girls&Boys vaccination**, Vaccine duration=Lifelong, Vaccine efficacy=95%

Women

- 40% Girls & 40% Boys
- 80% Girls-only

Men

- 40% Girls & 40% Boys
- 80% Girls-only

Relative reduction (%), HPV-16/18 prevalence

&: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination; **NOTE**: Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions; CA=Canada, VN=Vietnam, IN=India, UG=Uganda
Effectiveness: Increasing coverage in Girls or Boys?

Girls-only & **Girls&Boys vaccination**, Vaccine duration=Lifelong, Vaccine efficacy=95%

CA=Canada, **VN**=Vietnam, **IN**=India, **UG**=Uganda

NOTE: Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions.

Relative reduction (%), HPV-16/18 prevalence

- **Women**
 - 40% Girls & 40% Boys
 - 80% Girls-only

- **Men**
 - 40% Girls & 40% Boys
 - 80% Girls-only

&: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination; **NOTE:** Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions; **CA**=Canada, **VN**=Vietnam, **IN**=India, **UG**=Uganda
Effectiveness: Increasing coverage in Girls or Boys?

Girls-only & Girls&Boys vaccination, Vaccine duration=Lifelong, Vaccine efficacy=95%

NOTE: Box plots represent the median, and 10, 25, 75, and 90th percentiles of the model predictions; CA=Canada, VN=Vietnam, IN=India, UG=Uganda

&: HPV-ADVISE; Long term effectiveness after 70 yrs of vaccination;
Cost-effectiveness: Gender-neutral vaccination

- Strong evidence suggests that Girls-only vaccination will provide substantial herd protection to boys/men\(^1,2\)
 - Added benefit of vaccinating boys is predicted to be limited\(^1\)

- Increasing coverage in girls provides greater impact than including boys

- **HIC**: Gender-neutral immunization (vs Girls-only) is:
 - Unlikely cost-effective IF vaccine coverage is high in girls\(^3\)
 - May be cost-effective IF vaccine coverage is less than 50% in girls\(^3\)

- **LMIC**: Cost-effectiveness studies of Gender-neutral immunization are largely lacking\(^3\)

- Considerations about Gender-neutral immunization should focus on:
 - Feasibility of increasing coverage in girls vs vaccinating boys\(^1\)
 - Equity for men who have sex with men
 - Vaccine price

Multiple age cohort HPV immunization

Model predictions
Effectiveness & Cost-effectiveness
Multiple age cohort immunization: HPV-16/18 &

Girls-only vaccination, Coverage=80%, Vaccine duration=Lifelong, Vaccine Efficacy=95%

&: HPV-ADVISE, Median (line) of model predictions
Multiple age cohort immunization: HPV-16/18 &

Girls-only vaccination, Coverage=80%, Vaccine duration=Lifelong, Vaccine Efficacy=95%

&: HPV-ADVISE, Median (line) of model predictions

Girls-only vaccination, Coverage=80%, Vaccine duration=Lifelong, Vaccine Efficacy=95%
Multiple age cohort immunization: HPV-16/18 &

Girls-only vaccination, Coverage=80%, Vaccine duration=Lifelong, Vaccine Efficacy=95%

&: HPV-ADVISE, Median (line) of model predictions
Multiple age cohort immunization: Cervical cancer

Girls-only & 9-valent, Coverage=80%, Vaccine duration=Lifelong, Vaccine Efficacy=95%

% Reduction in Cervical Cancer

Years since start of Vaccination

&: HPV-ADVISE, Median (line) of model predictions
Multiple age cohort immunization: Cervical cancer

Girls-only & 9-valent, Coverage=80%, Vaccine duration=Lifelong, Vaccine Efficacy=95%

- **Canada**
- **Vietnam**
- **India**
- **Uganda**

Years since start of Vaccination

% Reduction in Cervical Cancer

 HPV-ADVISE, Median (line) of model predictions
Multiple age cohort vs Gender-Neutral: HPV16/18

Coverage=80%, Vaccine duration=Lifelong, Vaccine Efficacy=95%

% Reduction in HPV-16/18 prevalence

Years since start of Vaccination

Canada

10 yr-old Girls-only
10 yr-old Girls&Boys
10-18 yr-old Girls-only

Mexico

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 5 10 15 20 25 30 35

Vietnam

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 5 10 15 20 25 30 35

India

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 5 10 15 20 25 30 35

Uganda

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 5 10 15 20 25 30 35

HPV-ADVISE, Median (line) of model predictions
Cost-effectiveness: Vaccinating multiple age cohorts vs single age cohort vaccination

- Vaccinating multiple age cohorts predicted to produce faster population-level impact
 - substantial impact in all countries modeled with HPV-ADVISE
 - magnitude of impact depends on country-specific distribution of age at sexual debut and remaining lifetime risk of infection

- **HIC:*** multiple age cohort vaccination of girls/women
 - likely to be cost-effective between 9-18 yrs
 - unlikely to be cost-effective between 19-24 yrs vs 9-18 yrs

- **LMIC:** In a global analysis using PRIME, vaccinating multiple age cohorts
 - girls 9-14 yrs old: cost-effective using 2 dose schedules
 - cohorts older than 15 yrs old: reduced incremental cost-effectiveness
 - requires 3-dose schedule
 - more girls/women will already have been infected

Question

• What is the incremental effectiveness and cost-effectiveness for cervical cancer prevention of different HPV vaccines based on Girls-only immunization?

Key modeling results

• Girls-only HPV vaccination (vs no vaccination)
 • High population-level effectiveness & strong herd effects
 • Highly cost-effective, irrespective of vaccine used
 • Main driver: Prevention of HPV-16/18 related cervical cancer
 • Cost-effective even when excluding herd immunity, cross-protection & benefit from reducing non-cervical diseases

• 9-valent Girls-only vaccination (vs 2- or 4-valent)
 • Further reduction of cervical cancer, little impact on non-cervical cancers
 • Likely cost-effective (vs 2 and 4-valent) in HIC & LMIC unless
 • very strong cross-protection from 2- or 4-valent is expected
 • 9-valent priced too high
 • Main drivers: Cross-protection from 2/4-valent / vaccine price
Question

- What is the incremental effectiveness and cost-effectiveness of adolescent Gender-neutral HPV immunization compared to Girls-only HPV immunization?

Key modeling results

Incremental effectiveness

- Strong herd effects from girls-only vaccination
- Added benefit of vaccinating boys is predicted to be limited
- Increasing coverage in girls provides greater impact than including boys

Cost-effectiveness of vaccinating girls & boys (vs girls-only)

- HIC: Unlikely cost-effective IF vaccine coverage is high in girls
- LMIC: Studies are largely lacking; Results will vary between countries depending on predicted herd effects

Main drivers

- Magnitude of herd effects by Girls-only vaccination / Burden of anogenital warts and HPV-related cancers
Question

• What is the incremental effectiveness and cost-effectiveness of multiple age cohort HPV immunization of females compared to single age cohort immunization of girls-only aged 9-13 years?

Key modeling results

Incremental effectiveness of multiple age cohort vaccination

• Rapid impact with stronger herd effects
• More cervical cancer cases averted over time

Cost-effectiveness of multiple age cohorts (vs single age cohort immunization)

• Catch-up up to age 14 years predicted to be at least as cost-effective as routine vaccination
• Catch-up after 15 years of age less cost-effective

Main drivers of incremental effectiveness & cost-effectiveness

• Timing of benefits & enhanced herd effects
• Age of start of sexual activity (age-specific proportion susceptible)
• 3 dose recommendation for 15+ year olds
Thank you!
Conflicts of interest statements

- Brisson: Past 3 years, Unrestricted grant, Merck (Zoster burden)
- Drolet: Consultation, GSK (Zoster vaccine)
- Jit, Laprise, Boily, Baussano, Franceschi, Alary, Martin, Bénard: no potential conflicts to declare

HPV related funding