Observed and forecasted impact of different candidate Ebola vaccines immunization strategies and target populations

Anton Camacho (Epicentre & LSHTM)
On behalf of the 3 modelling teams who presented at the SAGE Working Group of March 2017

SAGE meeting, 25-27 April 2017
Objective

• Summarize existing evidence about the **population-level effectiveness** of Ebola virus disease (EVD) immunisation of different strategies and target populations, using:

 • Observational data (following a flare-up in Guinée in March 2016)

 • **Predictions from Mathematical Models**

• Strategies & target populations tested:

 • **Pre-emptive** and/or **Reactive** vaccination

 • **Ring vs Targeted vs Mass** vaccination

 • Health-care workers; Front-line workers; Contacts and contacts of contacts of EVD cases; General population
Content

1. Overview of the different models

2. Summary of the findings
Models overview

Individual based
Tracks individual status
Models overview

Individual based
Tracks individual status

Compartmental
Tracks population status
Models overview

Individual based
Tracks individual status

Compartamental
Tracks population status

Branching process
Tracks infected individuals

[Diagram showing different models of disease spread]
Models overview

Individual based
Tracks individual status

Compartmental
Tracks population status

Branching process
Tracks infected individuals
Models overview

Individual based
Tracks individual status

Compartmental
Tracks population status

Branching process
Tracks infected individuals

DATA NEEDED FOR CALIBRATION

Complexity tractability

\[S \rightarrow I \rightarrow R \]
Models overview

Individual based
Tracks individual status

Compartmental
Tracks population status

Branching process
Tracks infected individuals
Models can reproduce both localised & widespread outbreaks.
Vaccination strategies

- **Pre-emptive** vaccination:
 - **Targeted**: health-care workers (HCWs). *NB: excluding front-line workers (FLWs) as they are recruited after the outbreak is declared.*
 - **Mass** vaccination: random allocation among people living in areas at risk of Ebola.
Vaccination strategies

• **Pre-emptive** vaccination:

 • **Targeted**: health-care workers (HCWs). *NB: excluding front-line workers (FLWs) as they are recruited after the outbreak is declared.*

 • **Mass** vaccination: random allocation among people living in areas at risk of Ebola.

• **Reactive** vaccination:

 • **Ring** vaccination: contacts and contacts of contacts (CCCs) of EVD cases. *Parameters based on Ebola ça Suffit ring trial data.*

 • **Targeted** vaccination: HCWs and/or FLWs

 • **Mass** vaccination: random allocation among people living in areas reporting EVD cases.
<table>
<thead>
<tr>
<th></th>
<th>Branching process</th>
<th>Comp. 1 Kikwit</th>
<th>Comp. 2 West-Africa</th>
<th>IBM</th>
<th>IBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-emptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-emptive</td>
<td>HCW</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Pre-emptive</td>
<td>Mass</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Reactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive</td>
<td>Ring</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Reactive</td>
<td>Targeted</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Reactive</td>
<td>Mass</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Vaccine efficacy

Single-dose:
VE = 100% (CI: 64-100%) after day 7 post-vaccination

Prime-boost:
VE = 80% after day 7 and 90% after day 28 post-vaccination
Models limitations

- Models do not explicitly account for spontaneous human behavioural changes
- **Data used for calibration** might be incomplete thus introducing potential biases
- Several **unknown parameters** are based on assumptions:
 - Efficacy of prime-boost vaccine (no phase 3 trial yet)
 - Duration of immunity (>1 year for single dose and prime-boost)
 - Capacity on the field for mass vaccination (e.g. number of doses distributed per day)
1. Overview of the different models

2. Summary of the findings
Impact of health-care workers vaccination

Effect of different vaccination strategies

Total number of cases

Effect of HCW coverage in ahead-of-time strategies

Note: this model reproduces the 1995 EVD outbreak in Kikwit and accounts for classical control measures that were implemented at that time.
Impact of health-care workers vaccination

Effect of different vaccination strategies

HCW coverage = 30%

-40%

Note: this model reproduces the 1995 EVD outbreak in Kikwit and accounts for classical control measures that were implemented at that time.
Impact of health-care workers vaccination

Effect of different vaccination strategies

- HCW coverage = 30% + reactive mass vaccination of community (140k doses) - 41%

Note: this model reproduces the 1995 EVD outbreak in Kikwit and accounts for classical control measures that were implemented at that time.
Impact of health-care workers vaccination

Effect of different vaccination strategies

- **HCW coverage = 30% + reactive mass vaccination of community (140k doses)**
- -41%

Note: this model reproduces the 1995 EVD outbreak in Kikwit and accounts for classical control measures that were implemented at that time.
Impact of health-care workers vaccination

Effect of different vaccination strategies

Total number of cases

HCW

HCW + community

HCW only (30% coverage)

HCW + reactive community vaccination

No vaccination

Ahead-of-time HCW vaccination

Reactive

Kikwit 1995

Jan 1995

Apr 1995

Jul 1995

Note: this model reproduces the 1995 EVD outbreak in Kikwit and accounts for classical control measures that were implemented at that time.
Health-care workers

- **HCWs are at high-risk of infection** during EVD outbreaks, especially at the outset of the outbreak when they can amplify the spread of the disease.

- Models suggest that pre-emptive vaccination of HCW may be an **effective strategy with both direct and indirect protective effects** to limit the spread to the community and avoid depletion of HCWs in areas with limited health-resources.

- The number of doses needed depends on the number of HCW in areas at risk of EVD outbreaks, their turnover and the **(unknown) duration of vaccine-induced immunity**.
Impact of ring vaccination + pre-emptive/reactive HCW/FLW vaccination

Seeding in rural areas

Basic reproduction number (R0)

EPP is defined as the reduction of the risk of observing a large outbreak (>300 cases).

Note: this model assumes poor or zero initial infrastructure for classical control measures.
Impact of ring vaccination + pre-emptive/reactive HCW/FLW vaccination

EPP is defined as the reduction of the risk of observing a large outbreak (>300 cases).

Note: this model assumes poor or zero initial infrastructure for classical control measures.
Impact of ring vaccination + pre-emptive/reactive HCW/FLW vaccination

Seeding in rural areas

Basic reproduction number (R0)

EPP is defined as the reduction of the risk of observing a large outbreak (>300 cases).

Note: this model assumes poor or zero initial infrastructure for classical control measures.
• **Ring vaccination may be an effective reactive strategy** to contain Ebola outbreaks because it tracks the transmission dynamics and target the CCCs who are the most at risk of being infected.

• **Effectiveness of this strategy has been demonstrated** during the *Ebola ça Suffit* ring vaccination trial in Guinea as well as during the flare-up in Guinea.

• Models suggest that ring vaccination may be **more effective in rural than in urban areas**, due to higher population density in cities.
Ring vaccination of contacts and contacts of contacts (2/2)

- Models suggest that ring vaccination should work best in conjunction with pre-emptive/reactive vaccination of HCWs/FLWs as well as with classic control measures.

- In particular, comprehensive contact tracing is essential for effective ring vaccination since missed infected contacts can seed the epidemic to new areas.

- Models results suggest that localised Ebola outbreaks can be contained with 10,000 doses whereas more widespread epidemics can be contained with 50,000 doses.
Mass vaccination

- In case of poor case detection and contact tracing, models suggest that ring vaccination should be supplemented by more geographically targeted mass vaccination.

- Targeting villages of patients would require a tenfold increase of doses to be effective (~100,000 doses).

- Targeting regions reporting cases would require a hundredfold increase of doses (~1,000,000 doses) but would have little impact in case of late vaccination.
Thank you!

Acknowledgements:

M. Ajelli
N. Dean
L. Fumanelli
M.E. Halloran
I.M. Longini
S. Merler
A. Pastore y Piontti
A. Vespignani
A. Camacho
J. Edmunds
R. Eggo
S. Funk
A. Kucharski
A. Robert
C. Watson
C. Donnelly
N. Ferguson
W. Hinsley
G. Nedjati-Gilani
S. Riley
Impact of health-care workers vaccination

Note: this model reproduces the 1995 EVD outbreak in Kikwit and accounts for classical control measures that were implemented at that time.
Impact of ring vaccination

Note: classical control measures are also implemented in this model
Impact of ring vaccination + reactive HCW vaccination

Note: this model is gauged to a baseline with poor or zero initial infrastructure for classical control measures.
Number of doses/rings after 6 months

Note: this model is gauged to a baseline with poor or zero initial infrastructure for classical control measures.
Impact of ring vaccination + pre-emptive/reactive HCW/FLW vaccination

Note: this model assumes poor or zero initial infrastructure for classical control measures.
Impact of mass vaccination (village)

Seeding in rural areas

EPP (%)

Impact of mass vaccination (village)

EPP is defined as the reduction of the risk of observing a large outbreak (>300 cases).

Note: this model is gauged to a baseline with poor or zero initial infrastructure for classical control measures.

a: mass vaccination (village of patients + random component)
b: a + reactive HCWs
c: a + pre-emptive HCWs + reactive FLWs
Impact of mass vaccination (region)

These campaigns can reduce transmission and shorten the outbreak, but use 1-3 million doses (per country) to decrease the number of cases by approximately 50%.

Note: this model reproduces the 2013-2016 EVD outbreak in Liberia and Sierra-Leone and accounts for classical control measures that were implemented at that time.