Measles in infants less than 6 months of age and effectiveness and safety of vaccination.

Dr. N.S. Crowcroft on behalf of the SAGE Measles and Rubella working group
Member of SAGE Measles and Rubella Working Group, Chief, Applied Immunization Research and Evaluation, Public Health Ontario, and Professor, University of Toronto
SAGE, 19th October 2017
Background (1)

- Countries are experiencing measles outbreaks with high incidence in children < 6 months of age.
- A systematic literature review of effects and safety of measles vaccination < 9 months of age was conducted in 2015.
- SAGE (October 2015) recommended that infants from 6 months of age receive a dose of MCV in the following circumstances:
 - during a measles outbreak as part of intensified service delivery;
 - during SIAs in settings where the risk of measles among infants remains high (e.g. in endemic countries experiencing regular outbreaks);
 - for internally displaced populations and refugees, and populations in conflict zones;
 - for individual children at high risk of contracting measles
 - for infants travelling to countries experiencing measles outbreaks;
 - for infants known to be HIV-exposed.
Background (2)

- MCV administered at 6 months of age should be considered a supplementary dose and recorded on the child’s vaccination record as “MCV0”.
- This policy guidance protects infants from 6 months.
- Question remains on how to protect infants < 6 months.

- Two approaches to this question:
 - Analysis of the epidemiology of measles in infants < 6m.
 - Systematic review of vaccine immunogenicity, effectiveness and safety when given to infants < 6 months.
Epidemiology of Measles in Infants Younger Than 6 Months: Analysis of Surveillance Data 2011-2016

Jennifer L. Kriss, PhD, MPH
CDC/Global Immunization Division
Research Questions

• What is the burden of measles epidemiology among infants <6 months old?

• What epidemiological circumstances and country situations are associated with a significant proportion of children <6 months old affected?
Analytic Methods

1. Epidemiologic analysis: assess the scale of measles epidemiology among infants <6 months 2011-2016
 • Descriptive analysis of infant cases and the country contexts
 – Absolute numbers of cases
 – As a proportion of all measles cases
 – Age-specific incidence

2. Comparative study: bivariate and multivariate regression analyses
 • Evaluate associations between country/programmatic characteristics and measles cases among infants <6 months

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Regression Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>proportion <6 months (continuous)</td>
<td>beta</td>
</tr>
<tr>
<td>high vs. low proportion <6 months</td>
<td>logistic</td>
</tr>
<tr>
<td>age-specific incidence (continuous)</td>
<td>Poisson</td>
</tr>
</tbody>
</table>

• Independent variables: region, income classification, MCV1 and MCV2 coverage and programmatic characteristics, SIAs, population density, birth rate, total incidence
Inclusion & Exclusion Criteria

Inclusion criteria:
Countries with case-based measles surveillance data available for 2011-2016 (2014-2016 for SEAR) at WHO-HQ (n = 149)

Exclusions:
- <30 confirmed cases reported in case-based data (n=32 countries excluded)
- Countries that only report ages in years (n=36)
 - Most EUR countries (n=30 countries excluded; except for Armenia, Azerbaijan, Belarus, Georgia, Israel, Russia, Tajikistan, Turkey, and Uzbekistan)
 - All remaining SEAR countries except India (n=6 countries excluded)
- Hong Kong not a MS so WUENIC estimates and population data not available (n=1)

Countries included in epidemiologic analysis (n = 80)
- All regions represented, except only 1 country in SEAR and only 9 countries in

Excluded for regression models:
- India (cases reported in case-based data not representative of all cases)

*SEAR: India; EUR: Armenia, Azerbaijan, Belarus, Georgia, Israel, Russian Federation, Tajikistan, Turkey, Uzbekistan.
Limitations

• A lot of data excluded because of incomplete age data
 • Whole countries: 30 EUR countries, 6 SEAR countries + India for regression models
 • Including countries with recent large outbreaks – Romania

• Ecologic analysis – aggregate data only allowed for analysis of 6 years grouped together, using the unit of observation as the country (not individual cases)

• Small sample size (n=79 countries)

• Questionable quality of some of the data, and no way to measure and control for poor quality (e.g., quality of coverage data, variable surveillance sensitivity)

• Associational, not causal
Confirmed Measles Cases, 2011-2016

- 390,522 confirmed* measles cases of all ages, 2011-2016
- 68,333 cases excluded in EUR/SEAR countries
- 16,953 (4.3%) <6m

* laboratory-confirmed and epi-linked; 30 EUR and 10 SEAR countries not included.
Cases <6 Months by Region

16,953 (4.3%) Measles cases <6 months, by region, 2011-2016*

<table>
<thead>
<tr>
<th>Region</th>
<th>% Cases <6m</th>
<th>% Popn <6m</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>37.2%</td>
<td>1.7%</td>
</tr>
<tr>
<td>WPR</td>
<td>31.6%</td>
<td>0.8%</td>
</tr>
<tr>
<td>EMR</td>
<td>17.3%</td>
<td>1.3%</td>
</tr>
<tr>
<td>EUR</td>
<td>9.6%</td>
<td>0.8%</td>
</tr>
<tr>
<td>SEAR</td>
<td>4.1%</td>
<td>1.0%</td>
</tr>
<tr>
<td>AMR</td>
<td>0.2%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Majority of cases <6 months in AFR (37%) and WPR (32%) countries SEAR and EUR under-represented because of missing age data
Measles Age-Specific Incidence, by age group, 2011-2016

- Cases <6 months comprised 4.3% of all cases
- Incidence in this age group: 73.7 per million
- Higher than incidences for 5-9y, 10-14y, and >15y
- Incidence falls after 9 months
Comparing 2 different measures: Age-specific incidence and proportion (%) of cases by age

Measles Age-Specific Incidence, by Region, 2011-2016

Note that EUR and WPR have both highest incidence and %
Countries with Highest Age-Specific Incidence for Infants <6 Months

Measles incidence per million among infants <6 months, top countries, 2011-2016

*SEAR countries 2014-2016.

All had large outbreaks that dominated the country (MNG, FSM, PNG had ~0 cases before outbreaks)
Measles incidence per million (blue) and proportion of cases (orange) among infants <6 months of age, top countries, 2011-2016

- Countries with the highest incidences of measles in infants <6 months do not necessarily have the highest proportions of cases among infants <6 months, but many do
- Driven by high overall incidence years, outbreaks
Correlation Between Incidence <6 Months and Incidence >15 Years, Stratified by Region

Correlation between incidence <6 months and incidence >15 years, **African region**

\[y = 0.0254x + 4.4492 \]

\[R^2 = 0.41915 \]

Correlation between incidence <6 months and incidence >15 years, **Eastern Mediterranean region**

\[y = 0.0182x + 4.8885 \]

\[R^2 = 0.03699 \]

Correlation between incidence <6 months and incidence >15 years, **European region**

\[y = 0.1212x - 0.9138 \]

\[R^2 = 0.52154 \]

Correlation between incidence <6 months and incidence >15 years, **Western Pacific region**

\[y = 0.0622x + 9.2336 \]

\[R^2 = 0.46717 \]
Summary of epidemiological analysis

• During 2011-2016, almost 17,000 confirmed measles cases reported among infants <6 months
 – Underestimate since 30 EUR and 6 SEAR countries not included, includes lab-confirmed and epi-linked cases only
 – Majority of cases were in AFR and WPR countries
 – Highest age-specific incidence <6 months in WPR and EUR

• Half of countries had at least 3.6% of their cases among infants <6 months (compared to median 1.4% of the population is <6 months) → disproportionately affected

• WPR and EUR highest proportion of cases aged <6 months AND aged 15+ years

• Incidence increases with age corresponding to declining maternally derived immunity, and declines after 9 month MCV1
MCV1 below 6 months of age
Benefits and Risks

Laura Nic Lochlainn and Susan Hahné

RIVM - Centre for Infectious Disease Control
The Netherlands
Review questions

• Is the effect of MCV1 given to children <6 months of age equal or less than when administered at 6-8 months of age?
 • Immunogenicity
 • Duration of immunity
 • Efficacy/effectiveness

• Does a dose of MCV1 administered <6 months of age blunt the immune response to a subsequent dose of measles vaccine?

• Is the safety profile for infants vaccinated with MCV1 at <6 months of age comparable with infants vaccinated with MCV1 at 6-8 months of age?
Methods: Analyses

• Meta-analyses
 • Random effects meta analyses of continuous outcomes, proportions and within-study comparisons, resulting in forest plots, pooled estimates and heterogeneity indicator I2 statistic.
 • Vaccine strains analyzed as subgroups.

• Meta-regression
 • Random effects meta-regression to explore whether age at MCV1, vaccine strain and titer, continent, type of test, or decade of study explained heterogeneity between studies.
Methods: Search

• Dates of search
 • Initial search carried out 01-06-2015 for any articles published in relevant databases
 • Updated search carried out on 13-04-2017 for articles published after 01-01-2015 in relevant databases

• Sources
 • Embase.com (MEDLINE + EMBASE); Scopus; ProQuest (SciSearch, Global Health, BIOSIS Previews); Google scholar; WHO: WHOLIS and IRIS
 • Key reviews: Cutts et al, 1995; Markowitz, 1990; Moss & Scott, 2009; Nic Lochlainn et al, 2015
Results of search

Total hits
867 records
(MEDLINE search 491 records); (DIMDI Software; MEDLINE, EMBASE, SciSearch, BIOSIS Previews, GLOBAL Health 370 records); 6 reviews

Excluded: 89 records
89 Duplicates

Title and abstract screening
778 records

Excluded: 563 records
300 age MCV>=9m; no age group<9m specified
30 coverage data
29 maternal antibodies
14 case reports
23 ineligible study population
39 position paper/opinion/statement
62 no measles vaccination data
13 non human data
33 no outcome/primary data included
20 no currently licensed vaccine / alternative vaccination route

Full text screening (215+108)
323 records

Excluded: 185 records
31 duplicates (from snowballing database)
68 age MCV>=9m; no age group<9m specified
1 coverage data
4 maternal antibodies
14 position paper/opinion/statement
11 no measles vaccination data
41 no outcome/primary data included
15 no currently licensed vaccine / alternative vaccination route

Snowballing: 108 records
64 Records from reviews
44 Records from full text screening

Data extraction
138 records*

Immunogenicity
13 records

Duration of immunity
2 records

Efficacy/effectiveness
2 records

Safety
1 record

Blunting
2 records
Humoral immunity in <6 months

Proportion seroconverted by age of MCV1 and strain

*Moss & Scott, 2009
**Nic Lochlainn et al, 2015
Humoral/cellular immunity

• Increase in proportion seroconverted with age (4-5 months)
 • Dependent on strain

• Duration of immunity (2 studies)
 • Limited number of studies with comparison <6 and ≥6 months at MCV1

• Cellular immunity
 • Not lower when MCV1 <6 months
 • Very limited data (one study)
Maternal antibodies

Results based on PRNT, HIA and ELISA
Effectiveness

• Few eligible studies (n=2) with small sample sizes

• VE estimate for MCV1 at 9-11 months: 77% (IQR 62-91%) (Uzicanin et al, 2011)

• VE estimate MCV1 at 6-8 months 61% (95%CI 28-95%) (Nic Lochlainn et al, 2015)

Blunting

• Limited evidence (2 studies) found high seropositivity (97-98%) although GMTs were lower following MCV1<6 months of age.
Safety

• Limited number of studies reporting safety (n=2)
• No adverse events following MCV1 below 6 months among 1128 infants
• Observation can be confounded by other causes of rash, fever which are more frequent in younger children: inadequate study designs
• No studies reporting serious adverse events following immunization
Conclusions of literature review

- Humoral immunogenicity dependent on age of MCV1
 - Increase in proportion seroconverted with age
 - Also dependent on presence of maternal antibodies and vaccine strain (Edmonston-Zagreb strain highest)

- Cellular immunity, vaccine effectiveness and blunting
 - Limited evidence available
SAGE WG recommendations

• Data from the systematic review is insufficient to recommend vaccination under 6 months of age

• Immunizing infants <6 months would not be a primary strategy as it is not as effective as protecting through herd immunity achieved by high coverage in older age groups

• The current policy statement on vaccination of infants from 6 months is already broad and inclusive

• No need to expand the current recommendations
Research gaps

• There is a need to:
 • Address the substantial information gap on transmission sources, disease burden and role of factors such as blunting and maternal immunity in infants under 6 months
 • Better understand the transmission drivers (e.g. young adults or parents) to enable more effective targeting
 • Identify ways to improve data quality and tools to be able to interpret data according to data quality, completeness of surveillance and other contextual factors at country and region levels
 • Conduct clinical trials in infants <6 months to improve the evidence concerning effectiveness, safety and long term effects on the effectiveness of subsequent MCV doses (i.e. MCV1 and MCV2)
SAGE Measles and Rubella Working Group

• Members: Narendra Arora, Natasha Crowcroft, David Durrheim, Ilesh Jani, Jalila Jawad, Mark Jit, Bill Moss, Walter Orenstein, Susan Reef, Helen Rees, Nikki Turner (Chair).

• WHO: Alya Dabbagh, Minal Patel, Katrina Kretsinger, Thomas Cherian.
Extra Slides
Updated search results

Total hits
186 records
(EMBASE 40 records); (Scopus 110 records); (PubMed 2 records); (Proquest search; SciSearch 21 records, Global Health 12 records, Biosis Previews 1 record)

Title and abstract screening
186 records

Excluded: 180 records
20 age MCV>6m; no age group<6m specified
21 coverage data
3 maternal antibodies
3 no abstract
6 case reports
3 ineligible study population
10 position paper/opinion/statement
10 no measles vaccination data
105 no outcome/primary data included

Full text screening
6 records

Excluded: 5 records
3 no measles vaccination data
2 no outcome/primary data included

Data extraction
1 record

Safety
1 record
Data Sources

• Case-based data available at WHO-HQ for year of onset 2011-2016
 • Except SEAR is 2014-2016
 • Age-specific incidence is 6-year average, except SEARO is 3 years
 • Percentage of cases <6 months, calculated using denominator cases with known age (cases missing age are excluded from denominator)

• Population: UNDP estimates for year 2015 (revision 2015)

• Income classification: World Bank country classification (2011)

• Vaccine coverage: WUENIC, 5-year average (2007-2011)

• Vaccination schedule: as reported in 2016 JRF submission

• Vaccination introduction: WHO spreadsheet

• SIA information: WHO spreadsheet

• Population density: persons per km2; UNDP estimates for year 2011

• Birth rate: per 1,000 population; UNDP estimates for years 2010-2015