IMPACT OF HPV IMMUNIZATION STRATEGIES & POTENTIAL FOR CERVICAL CANCER ELIMINATION

Marc Brisson
Full Professor
Université Laval, Canada

SAGE meeting
October 24, 2018
Geneva
Questions

A. What is the potential for Cervical Cancer elimination with HPV immunization?

B. What is the population-level effectiveness and cost-effectiveness of different HPV immunization schedules and strategies?
POTENTIAL FOR CERVICAL CANCER ELIMINATION:
A COMPARATIVE MODELING STUDY

M Brisson, J Kim, K Canfell, C Gopalappa, E Burger, D Martin, E Benard, Kate Simms, M Drolet, S Sy, C Regan, A Keane, M Smith, C Pretorius, MC Boily, N Broutet & R Hutubessy

Université Laval, Canada; Harvard T.H. Chan School of Public Health, USA; Cancer Council NSW, Australia; University of Massachusetts Amherst, USA; CHU de Québec-Université Laval Research Center, Canada; Avenir Health, USA; Imperial College, UK; World Health Organization, Switzerland

SAGE meeting
October 24, 2018
Geneva
Call for action to eliminate cervical cancer

- In May, the WHO Director-General made a global call for action to eliminate cervical cancer as a public health problem.

- Elimination of cervical cancer as a public health problem is different to elimination of an infectious disease:
 - Not reduction to 0 incidence
 - Control of cervical cancer at a low disease incidence
 - Requires clear well defined threshold
 - Previously used for other diseases by WHO
 - Neonatal Tetanus (NT): 1 NT per 1000 live births per yr
 - Congenital syphilis: Case rate of ≤50 per 100 000 live births

*: WHO Director-General Speech - http://www.who.int/reproductivehealth/DG_Call-to-Action.pdf
Call for action to eliminate cervical cancer

Key questions that must be addressed

• What is the definition of cervical cancer elimination as a public health problem?
 - What outcome? Cancer incidence? Mortality? % Reduction?
 - Same for every country?
 - Pragmatic? Optimistic?

• What combination of screening and vaccination strategies can lead to elimination (for different definitions)?

• When could elimination be reached, for different strategies and countries?

• What is the most efficient/cost-effective strategy to reach elimination?
Need for mathematical models

• Mathematical models provide a formal framework to examine key elimination questions
 - project long-term population-level effects (e.g., herd immunity)
 - evaluate multiple strategies under varying assumptions

• However, models require many simplifications & assumptions which leads to uncertainty in the validity of predictions
 - can create uncertainty for decision makers

• WHO initiated a model comparison to help provide guidance for cervical cancer elimination
 - the Cervical cancer elimination modeling consortium was created
Systematic comparative modeling approach

- **Model Selection**
 - Dynamic model
 - Model includes vaccination & screening
 - Independent model that has been peer reviewed/published

- **Policy 1 Model**
 - Lead: Karen Canfell
 - Team: Kate Simms, Adam Keane, Megan Smith
 - Institution: Cancer Council NSW, Australia

- **Harvard Model**
 - Lead: Jane Kim
 - Team: Emily Burger, Stephen Sy, Catherine Regan
 - Institution: Harvard, USA

- **HPV-ADVISE Model**
 - Lead: Marc Brisson
 - Team: Mélanie Drolet, JF Laprise, Dave Martin, Élodie Bénard, Guillaume Gingras, Iacopo Baussano, Marie-Claude Boily, Mark Jit
 - Institution: U Laval, Canada; Imperial College, UK; LSHTM, UK; IARC, France

- **Spectrum Model**
 - Leads: Chaitra Gopalappa & Carel Pretorius
 - Institution: U Massachusetts & Avenir Health, USA
Global predictions

78 Low & Lower Middle Income Countries

2 vaccination/screening scenarios
Vaccination & Screening scenarios

- **S1 - Scenario 1:**
 - Girls-only vaccination (90% coverage, 9-14 yr old)
 - No change in Screening

- **S2 - Scenario 2:**
 - Girls-only vaccination (90% coverage, 9-14 yr old)
 - 2 lifetime screens at 35 and 45 yrs old
 - High Screening ramp-up (45%, 70%, 90% in 2023, 2030, 2045, respectively)

- **All scenarios:**
 - Screening: HPV testing, 100% treatment efficacy, 10% Lost to follow-up
 - Vaccine: Lifelong duration, 100% efficacy, HPV16/18/31/33/45/52/58
Dynamics of elimination

Consistency in model predictions

High vaccination coverage & Screening Ramp-up

- No further change
- Vaccination only (S1)

Cervical cancer incidence (per 100,000)

Years

Low income countries

Lower middle income countries

HPV-ADVISE
Harvard
Policy1

Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58
Dynamics of elimination Impact over time
Low (LIC) & Lower Middle Income Countries (LMIC), High vaccination coverage & Screening Ramp-up

&. Mean predictions; Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58, HPV testing
Dynamics of elimination
Impact over time - under 45 year olds
Low (LIC) & Lower Middle Income Countries (LMIC), High vaccination coverage & Screening Ramp-up

Cervical cancer incidence (per 100,000)

Vaccination only (S1)

Vaccination, 2 lifetime screens (S2)

Mean prediction of models; Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58, HPV testing
Dynamics of elimination \textbf{Incremental benefits of strategies}

High vaccination coverage & Screening Ramp-up

- No further change
- Vaccination only
- Vaccination, 2 lifetime screens

Cases averted$^\text{a}$ (vs no change)

<table>
<thead>
<tr>
<th></th>
<th>LIC</th>
<th>LMIC</th>
<th>LIC</th>
<th>LMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>No further change</td>
<td>3.5 M</td>
<td>11.5 M</td>
<td>3.5 M</td>
<td>11.5 M</td>
</tr>
<tr>
<td>Vaccination only</td>
<td>4.3 M</td>
<td>14.2 M</td>
<td>0.8 M</td>
<td>2.7 M</td>
</tr>
</tbody>
</table>

$^\text{a}$ Mean prediction over 100 years; Adjusted cases averted for 2015 population; Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58, HPV testing
Country specific predictions
Low income & Lower Middle income countries
Vaccination only (S1)

2020

- Median prediction; Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58
Country specific predictions
Low income & Lower Middle income countries by region
Vaccination only (S1)

2120

Low income
Lower middle income

East Asia & Pacific
Europe & Central Asia
Latin America & Caribbean
Middle East & North Africa
South Asia
Sub-Saharan Africa

Time of elimination in all countries in region (lower & upper threshold)

Cervical Cancer Incidence [per 100,000]

0-4 4-10 10-15 15-30 30-80 80+

&. Median prediction; Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58
Country specific predictions
Low income & Lower Middle income countries
Vaccination, 2 lifetime screens (S2)

2020

- Median prediction; Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58, HPV test
Country specific predictions

Low income & Lower Middle income countries by region
Vaccination, 2 lifetime screens (S2)

Time of elimination in all countries in region (lower & upper threshold)

Median prediction; Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58, HPV test
Country specific elimination predictions

Impact of starting cervical cancer (CC) incidence
Low & Lower middle income countries, Vaccination only (S1)

Harvard & HPV-ADVISE; High vaccination coverage and screening ramp-up, Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58, HPV test
Country specific predictions
Absolute Reductions (AR) in Cervical cancer (CC) & Elimination
Low & Lower middle income countries, Vaccination only (S1)

&. Harvard & HPV-ADVISE; High vaccination coverage and screening ramp-up, Girls-only vaccination, Vaccine protection=HPV16/18/31/33/45/52/58, HPV test
Summary
Global analysis: 3 optimistic vaccination & screening coverage scenarios

What strategies lead to elimination?

- **Girls-only vaccination** leads to incidence <10/100,000 w-yrs without screening in most countries/regions
 - <15/100,000 w-yrs in Sub-Saharan Africa

- **Girls-only vaccination & 2 lifetime screens** leads to incidence <4/100,000 w-yrs in most countries/regions
 - <10/100,000 w-yrs in Sub-Saharan Africa

When does elimination occur?

- Average within LIC/LMIC: 2045-2060
 - UMIC/HIC: elimination occurs earlier
- 100% of countries: 2085-2105
- Depends on the strategy & threshold

&. Low (LIC), Lower Middle Income (LMIC), Upper Middle Income (UMIC), High Income Countries (HIC), Vaccine protection=HPV16/18/31/33/45/52/58, HPV test
Sensitivity Analysis

What is the impact of:
Vaccination Strategies & Coverage?
Number of Screens?
Vaccine characteristics?
Dynamics of elimination Impact of vaccination
No change in screening

- **No further change**
- **90% Girls-only vaccination**
- **80% Girls-only vaccination**
- **80% Girls & Boys vaccination**
- **80% Girls & Boys vaccination, Catch-up**

Vietnam

- **Cervical cancer incidence (per 100,000)**

Uganda

- **Mean predictions; Vietnam: Policy-1/HPV-ADVISE; Uganda: Harvard/HPV-ADVISE; Vaccine duration=lifelong; VE=100%**
Dynamics of elimination **Impact of number of HPV types protected**

80% Girls-only vaccination, high screening ramp-up, 2 screens

Vietnam

- No further change
- Efficacy against HPV16/18 only
- Efficacy against HPV16/18/31/33/45/52/58

Uganda

- No further change
- Efficacy against HPV16/18 only
- Efficacy against HPV16/18/31/33/45/52/58

Time to

\[
\begin{array}{cccc}
\text{<10/100,000} & \text{<4/100,000} \\
\text{VN} & \text{UG} & \text{VN} & \text{UG} \\
2054 & 2073 & 2077 & 2097 \\
2054 & 2082 & 2089 & X \\
\end{array}
\]

Mean predictions; Vietnam: Policy-1/HPV-ADVISE; **Uganda:** Harvard/HPV-ADVISE; Vaccine duration=lifelong; VE=100%
Dynamics of elimination Impact of duration of vaccine protected
80% Girls-only vaccination, high screening ramp-up, 2 screens

- No further change
- Vaccine Duration = lifelong
- Vaccine Duration = 20 years

Time to

<table>
<thead>
<tr>
<th></th>
<th><10/100,000</th>
<th><4/100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnam</td>
<td>2054</td>
<td>2077</td>
</tr>
<tr>
<td>Uganda</td>
<td>2073</td>
<td>2097</td>
</tr>
</tbody>
</table>

Mean predictions; Vietnam: Policy-1/HPV-ADVISE; Uganda: Harvard/HPV-ADVISE; Vaccine duration=lifelong; VE=100%
Sensitivity analysis
40 scenarios, 12 countries

- Greatest additional benefits (cancers cases averted over time):
 - Vaccination of Girls-only with high coverage (vs no vaccination)
 - 2 lifetime screens (vs current screening)
 - Multi-cohort vaccination (vs single-cohort vaccination) - No impact on elimination

- Screening or multi-cohort vaccination accelerates elimination (5-15 yrs)

- Smallest additional impact
 - Vaccinating boys (vs Girls-only) if Girls-only coverage is high

- Long-term duration of vaccine protection is required for elimination
SUMMARY

• Models produced consistent findings

• Countries with cervical cancer incidence < 30/100,000 w-yrs
 - >80% Girls-only vaccination coverage could lead to elimination without changes to screening

• Countries with cervical cancer incidence ≥ 30/100,000 w-yrs
 - elimination is highly dependent on the threshold used
 - high screening & vaccination coverage, and a broad spectrum vaccine is required
 - hardest to eliminate but have greatest absolute reductions in incidence
 - countries with incidence ≥ 70/100,000 w-yrs may not reach elimination

• Long-term vaccine protection is needed (>20 years)
 - particularly for higher cervical cancer incidence countries
SUMMARY

• Greatest additional benefits:
 - Vaccination of Girls-only (vs no vaccination)
 - 2 lifetime screens (vs no screening)
 - Multi-cohort vaccination (vs single-cohort vaccination)
 - Screening at least once in a lifetime & multi-cohort vaccination accelerates elimination by about 10 years

• Results are most sensitive to:
 - Definition of elimination - Threshold
 - Starting cervical cancer incidence

• Future work:
 - Examine the cost and cost-effectiveness of elimination
 - Identify the most efficient strategies for elimination
IMPACT OF DIFFERENT HPV IMMUNIZATION SCHEDULES AND STRATEGIES

Brisson M1,2, Jit M3,4, Bénard É2, Martin D2, Drolet M2, Laprise JF2, Boily MC5, Alary M1,2, Baussano I6, Gingras G2, Pérez N2, Hutubessy R7

SAGE meeting
October 24, 2018
Geneva
Objective

• Examine the population-level effectiveness and cost-effectiveness of HPV immunization of different schedules and strategies in Low and Lower Middle Income Countries, using:
 - Predictions from Mathematical Models

Schedules/strategies

• Girls-only HPV immunization (HPV2 or HPV4 vs HPV9)
• Gender-neutral HPV immunization (vs Girls-only)
• Multiple age cohort HPV immunization (vs single age cohort)
Methods

Modeling - Population-level effectiveness & herd effects

HPV-ADVISE (Agent-based Dynamic model for Vaccination & Screening Evaluation)¹

- Transmission-dynamic model of HPV infection and disease (includes herd immunity)

- Models 18 HPV types:
 - Types included in the 9-valent vaccine (HPV-6/11/16/18/31/33/45/52/58)
 - 9 other high risk types

- Fit HPV-ADVISE to Canada, India, Vietnam, Benin, Nigeria and Uganda²
 - Demographic and sexual behaviour
 - HPV prevalence and cervical cancer incidence (age and type-specific)
 - Data from international databases and original studies²

REF: 1. Brisson, JNCI 2015; ²: Demographic and Health Surveys, Multiple Indicator Survey, ICO information Centre on HPV and Cancer, United Nations Statistics Division, HIV and AIDS HUB for Asia Pacific-Evidence to action, WHO Global Health Observatory data repository, literature reviews, and original studies from IARC and Dr. M Alary (see back-up slides for references & model fit)
Question: Girls-only immunization

• What is the incremental effectiveness and cost-effectiveness for cervical cancer prevention of different HPV vaccines based on Girls-only immunization?

Key modeling results

• Girls-only HPV vaccination (vs no vaccination)
 • High population-level effectiveness & strong herd effects
 • Highly cost-effective, irrespective of vaccine used
 • Main driver: Prevention of HPV-16/18 related cervical cancer
 • Cost-effective even when excluding herd immunity, cross-protection & benefit from reducing non-cervical diseases

• HPV9 vaccine Girls-only vaccination (vs HPV2 or HPV4)
 • Likely cost-effective (vs HPV2 or HPV4) in HIC & LMIC unless
 • very strong cross-protection from HPV2 or HPV4 is expected
 • HPV9 priced too high
 • Main drivers: Cross-protection from HPV2/4 and vaccine price

REF: HPV-ADVISE, SAGE WG Meeting 2018; Ng, Vaccine 2018; Jit, Lancet Global Health 2015; Fesenfeld, Vaccine 2013
Question: Gender-neutral immunization

- What is the incremental effectiveness and cost-effectiveness of adolescent Gender-neutral HPV immunization compared to Girls-only HPV immunization?

Key modeling results

Incremental effectiveness

- HIC: Small additional benefits of vaccinating boys (even at low coverage)
- LMIC: Greater added benefit of vaccinating boys than in HIC
- HIC & LMIC: Increasing coverage in girls provides greater impact than including boys

Cost-effectiveness of vaccinating girls & boys (vs girls-only)

- HIC: Unlikely cost-effective IF vaccine coverage is high in girls
- LMIC: May be cost-effective even if coverage in girls is high
- LMIC: More cost-effective to increase coverage in girls when coverage is low

Main drivers

- Magnitude of herd effects by Girls-only vaccination / Burden of anogenital warts and HPV-related cancers

REF: HPV-ADVISE, SAGE WG Meeting 2018; Ng, Vaccine 2018; Brisson, Lancet Public Health
Question

• What is the incremental effectiveness and cost-effectiveness for cervical cancer prevention of different HPV vaccines based on Girls-only immunization?

Key modeling results

• **Girls-only HPV vaccination (vs no vaccination)**
 - High population-level effectiveness & strong herd effects
 - Highly cost-effective, irrespective of vaccine used
 - Main driver: Prevention of HPV-16/18 related cervical cancer
 - Cost-effective even when excluding herd immunity, cross-protection & benefit from reducing non-cervical diseases

• **HPV9 vaccine Girls-only vaccination (vs HPV2 or HPV4)**
 - Likely cost-effective (vs HPV2 or HPV4) in HIC & LMIC unless
 - very strong cross-protection from HPV2 or HPV4 is expected
 - HPV9 priced too high
 - Main drivers: Cross-protection from HPV2/4 and vaccine price

REF: HPV-ADVISE, SAGE WG Meeting 2018; Ng, Vaccine 2018; Jit, Lancet Global Health 2015; Fesenfeld, Vaccine 2013
Thank you!